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Executive Summary 

On behalf of the NSW Forest Monitoring Steering Committee, the NSW Natural Resources Commission 
(NRC) engaged the NSW Department of Planning, Industry and Environment (DPIE) and the University 
of Sydney in collaboration with the University of New England to assess the baselines, drivers and 
trends for soil stability and health within the NSW Regional Forest Agreement (RFA) regions.  This work 
is part of the wider NSW Government Forest Monitoring and Improvement Program (FMIP). 

A framework to evaluate forest soil health and stability 

We developed a conceptual framework for the evaluation of soil health and stability which outlines 
how soil health and function are assessed by comparing the condition of a soil to a reference condition. 

We identified potential drivers of change, such as bushfire and land disturbance, and their impacts, 
such as erosion and loss of soil organic carbon (SOC). 

Based on the potential drivers of change and the findings of our literature review, we developed a set 
of key physical, biological and chemical indicators which would provide measurements of the impacts 
of such change. Measurement of indicators serves to develop soil functional thresholds and validate 
existing management practices or inform potential improvements. 

Availability of soil data is limited  

We conducted a data-gap analysis, which determined that available soil health indicator 
measurements from the RFA regions are limited and subject to large spatiotemporal variation.  

Of the data held in the NSW Soil and Land Information System (SALIS), there are no measurements of 
soil biological health indicators from the area. In the last decade, less than 50 soil carbon 
measurements have been collected from across the RFA regions. No bulk density measurements have 
been collected during this time, which are needed for accurate calculation of belowground carbon 
stocks. Available measurements of other physical and chemical soil health indicators are similarly 
limited. 

The lack of data limits the certainty of any assessment of trends in overall soil health. 

Overall modelled soil health is declining 

We developed methods of spatial analysis to evaluate soil health indicators, including digital soil 
mapping and a novel approach to soil modelling, the data cube, which uses geospatial technology and 
machine-learning. These approaches allow us to establish key relationships and trends. 

We used these methods to evaluate the available data. Despite model performance being limited by 
the lack of current soil data, the digital soil modelling indicates: 

• SOC concentrations have declined slightly between 1990 and 2020, including periods of 
significant fluctuation likely related to variation in climatic conditions.  

• Areas subject to increased ground disturbance from land use activity, in particular forests in 
which grazing is permitted, have lower concentrations of SOC and higher bulk density 
(suggesting poorer soil structure and condition) than less disturbed areas. 

• Climate change is predicted to contribute to a decline in SOC and a slight rise in pH over 
most of the region. 

• Bushfires have a major influence on SOC with a dramatic loss immediately following the 
bushfire, followed by a gradual recovery of SOC in the following years. 

• The hillslope erosion risk in the RFA regions is highest in summer. A loss of vegetation cover 
increases the risk of hillslope erosion. 
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The limited findings indicate potential declines in soil health regardless of land use type, with trends 
in SOC being of specific concern. Without additional forest soil data, the uncertainties in the baseline 
and trends of NSW forest soil health will remain. 

More data are needed to improve confidence in results  

We have designed a conceptual soil monitoring program which would address this urgent need. We 
propose a program of time-series monitoring that incorporates flexibility such that sampling is focused 
on areas of concern, and statistical analysis to identify and prioritise indicators with the most 
significant input values. The program would leverage existing soil data and soil monitoring expertise 
and would deliver a core dataset from which soil functional thresholds and locations of soil change 
could be determined. 

The data produced by such a program would deliver important insight for strategic direction of 
resource management and future scenario planning, delivering tangible results to support 
management of forest soils and maintain or improve the condition of this valuable and threatened 
resource.  
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1 Introduction 

1.1 Preamble 

On behalf of the NSW Forest Monitoring Steering Committee, the NSW Natural Resources Commission 
(NRC) engaged the NSW Department of Planning, Industry and Environment (DPIE) and the University 
of Sydney with collaboration from the University of New England to support the NSW Forest 
Monitoring and Improvement Program (FMIP). 

The FMIP seeks to improve forest management decision-making across NSW forests of all tenures 
(national parks, state forests, crown land and private land) through monitoring, evaluation, research 
and reporting.  

To support this objective, the program has posed state-wide evaluation questions including: what is 
the health and stability of soil in forests, and what is their predicted trajectory?  

To answer this question, the program set five tasks: 

• Develop metrics for indicators of soil health and stability values 

• Propose a conceptual framework for the monitoring of indicator metrics across all tenures 

• Propose historic baselines for the indicators of soil health and stability in forests 

• Propose additional baselines for the indicators for which there is no current data 

• Analyse trends in the indicators of soil health and stability in forests 

1.2 Approach and objectives 

Our work on this project commenced with a literature review (Milford, 2021) to evaluate the existing 
research and approaches to the assessment of the health and stability of forest soils. The review 
determined that reliable data on the health and stability of forest soils are relatively scarce. In forest 
science, the nature and dynamics of above-ground ecosystems have been examined in some detail, 
but far less attention has been directed towards soil systems. In soil science, researchers have focused 
on more intensively-used land, such as agricultural systems, with relatively little research attention 
directed to forests.  

We undertook an evaluation of the available soil data from NSW forests, which confirmed that such 
data are limited; it is subject to large spatiotemporal variation (refer Section 5) and is not sufficient to 
enable characterisation of the forest landscapes to which they belong due to variation in terrain, 
parent material, climate and soil types.  

Given these constraints, our approach to assess the baselines, drivers and trends of soil health and 
stability was as follows: 

• Design a conceptual framework for the evaluation of soil health and stability. 

• Develop a set of soil indicators (parameters) for measurement and monitoring of soil health 

and stability. 

• Evaluate the existing soil data from NSW forests (including by spatial analysis) in relation to 

presence, age, geographical coverage, parameters measured, repetition, and accuracy. 

• Carry out a data-gap analysis to identify data required to establish baseline values for soil 

indicators. 

• Estimate the current status of soil indicators for which there is sufficient data for analysis. 

• Identify potential drivers of change and threats to soil health. 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

2 

• Determine trends for soil health and stability (including by spatial analysis). 

• Propose a soil monitoring program to address data gaps, inform soil and land management 

and maintain or improve the condition of forest soils. 

1.3 Conceptual framework for evaluating soil health and stability 

A conceptual framework for the evaluation of soil health and stability is presented in Figure 1 and is 
described as follows: 

• Soils are subject to natural and human disturbances (Section 3.1) which have impacts on the 
soil (Section 3.2). 

• Impacts can be detected by measuring soil health indicators (Section 4). 

• The evaluation of the soil health indicator data determines the status of soil indicators. 

• This status is compared to that of a reference condition. Differences between the two 
indicate the health and stability of the soil at that point in time. 

• Soil health information is evaluated from across a study area to identify locations of change 
in soil condition to inform soil and land management practices. 

• Ongoing monitoring enables continued evaluation of soil health and stability of the area 
being monitored to assess the impact of changes to soil and land management. 

• Action is taken to maintain or improve soil condition. 

 

 

Figure 1 Conceptual framework for evaluating soil health and stability 
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2 Background 

2.1 What is soil health? 

The Intergovernmental Technical Panel on Soils of the United Nations’ Food and Agriculture 
Organisation (FAO) defines soil health as: 

The ability of the soil to sustain the productivity, diversity, and environmental services of 
terrestrial ecosystems (ITPS 2020). 

A healthy soil typically supplies the essential nutrients, water, oxygen and physical support that plants 
need to grow and thrive in a particular environment.  It is also a dynamic living ecosystem, containing 
billions of microscopic and larger organisms that carry out a range of vital environmental functions. 
Its functions are described in Figure 2. 

 

Figure 2  The 5 main functions of healthy soils (modified from Agriculture Victoria 2020) 

The health of a soil is defined by its ability to sustain the ecosystem to which it belongs. Forest 
ecosystems represent a broad grouping of soils, where differences in climate, geological parent 
material, soil texture (particularly the amount of clay), drainage and slope position result in natural 
variation in the ability of the soil to hold water, nutrients and carbon.  

Some soils are naturally more productive than others, but not necessarily more valuable in terms of 
the role they play in their natural setting (Burger et al. 2010). Therefore, it is necessary to measure 
the extent to which a managed soil is improved or degraded relative to a state that would naturally 
occur in that setting (Burger et al. 2010). 

All soils have been disturbed to some extent by natural and human activity. Thus, for the purpose of 
this work, we modelled a reference condition (refer Section 6) based on the current status of sites that 
were likely to have been subject to relatively less human disturbance based on management 
objectives and exclusions for particular areas. 
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A similar approach was adopted during the 2008-09 NSW Monitoring Evaluation and Reporting (MER) 
program (Chapman et al. 2011, OEH 2014), where the more a soil indicator has declined relative to a 
reference condition, the poorer is its health. Key indicators are presented in Section 4.  

This report considers the terms ‘soil quality’, ‘soil condition’ and ‘soil health’ to be interchangeable. 

2.2 What is soil degradation? 

Soil degradation is a loss of soil health. It is the physical, chemical and biological decline in soil quality. 
It can be the loss of organic matter, decline in soil fertility and structural condition, erosion, adverse 
changes in salinity, acidity or alkalinity, and the effects of toxic chemicals, pollutants or excessive 
flooding (DPIE 2019a). Soil degradation can include the following: 

• The loss of soil through wind or water erosion at a rate faster than it is formed. 

• The removal of soil nutrients exceeding their replacement. 

• Deterioration of soil characteristics such that the soil cannot support the ecosystem to which 
it belongs to its full capacity: 

o Organic matter is depleted. 

o Fertility declines. 

o Soil structure declines (surface sealing or soil compaction occurs). 

o Soil salinity increases. 

o Soil acidity increases. 

These impacts and their associated drivers of change are discussed further in Section 3. Metrics used 
to measure these indicators are discussed in Section 4. 

2.3 Why is soil health important? 

The prosperity and survival of both the human and natural world is intrinsically and profoundly linked 
to the health of our soils. The quality and health of our terrestrial, riparian and estuarine environments 
are highly reliant on the health of our soils.  

Humanity depends, and will continue to depend, on soil ecosystems and the services they provide. 
Some of the services forest soils provide are presented in Table 1 

Table 1 Forest soil services 

Soil service Description 

Carbon storage Soils represent a significant component of the terrestrial carbon cycle, globally estimated 
to contain 3 times more carbon than the atmosphere (Sanderman et al. 2017). A 
considerable portion of global soil carbon is stored in forests (Jandl et al. 2007). Protecting 
soil carbon stocks is necessary to mitigate the effects of climate change (refer Section 
2.4). Healthy soils not only contain carbon, but also create the necessary conditions for 
above-ground carbon sinks (plant biomass) to thrive.  

Water quality Soil health and water quality are intrinsically linked. Healthy soils store water and make it 
available to vegetation, buffering the environment against the effects of droughts, and 
filter that water as they release it, recharging groundwater and preventing pollution. Soils 
which lack healthy functionality may be subject to erosion, releasing sediment and 
pollutants into waterways.  

Healthy soils also support the forest vegetation, which intercepts, evaporates, and 
absorbs precipitation and transpires water back into the atmosphere, as well as surface 
and subsurface movement of water through infiltration and percolation (Adams et al. 
2020). Forests play a particularly important role in providing clean, high quality water, 
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Soil service Description 

surrounding the drinking water catchments of NSW. The buffering capacity of forest soils 
ensures a reliable source of quality, fresh water is available for human consumption. 

Biodiversity Below ground, soil organisms such as ants, termites and earthworms have long since been 
recognised for their role in aerating soils and breaking down leaves and debris, but only 
in the past few decades have microbiologists begun to reveal an immense diversity of 
microorganisms and animals that live below ground, ranging from protists, nematodes 
and tardigrades, to slightly larger animals such as mites, springtails and insect larvae 
(Pennisi 2020). Each gram of soil is estimated to contain 1 x 109 microorganisms and about 
4,000 species (Yarwood et al. 2020). 

Aboveground, soils provide the medium, substrate, biological activity, nutrients and 
water for native vegetation to grow and thrive. Native wildlife is also reliant on soil health, 
whether they live above, on or within soils, as they rely on native vegetation for survival. 

Pollution 
biodegradation 

Soils filter pollution, contributed to by soil organisms which accumulate pollutants in their 
bodies, degrade pollutants into smaller, non-toxic molecules, or modify those pollutants 
into useful metabolic molecules (Turbé et al. 2010), preventing harmful contaminants 
from being released to the air or waterways. 

Nutrient cycling Soils provide nutrients for tree growth, but also provide nutrient cycling and waste 
decomposition. They are a major reservoir of nutrients for plant uptake and for the 
decomposition system that mineralises and transforms organic matter, ensuring 
continued supplies of bioavailable nutrients (Rustad et al. 2020).  

Economic 
stability 

Soils produce all the timber we use in construction, paper and other industries, adding to 
its importance as an economic issue. According to the 2018 ABARES State of the Forests 
Report, the value of production of the forest and wood products industries in 2015-16 
was $23.7 billion (ABARES 2018). 

Healthy soils prevent the high costs associated with land and soil degradation, which an 
estimate for the year 2011 indicates equates to about AU$1.89 billion per annum (Milford 
2021). 

Human health Healthy soils help regulate drought, floods, water-borne diseases and other extreme 
events, provide landscape stability, prevent the spread of pests and pathogens and 
provide protection against famine and food insecurity (Lal 2011). Soil health is therefore 
also a human health issue. 

2.4 What does it mean for climate change mitigation? 

The NSW Government committed to reaching net-zero emissions by 2050. This commitment refers to 
an overall balance between greenhouse gases emitted and sequestered and is likely to rely heavily on 
carbon emission offsets (DPIE 2020). 

Historic depletion of soil organic carbon (SOC) resulting from soil and land management offers an 
opportunity for climate change mitigation, both by restoring carbon sinks and by protecting against 
further CO2 emissions. Deforestation and other land-cover changes are thought to be responsible for 
53–58% of the difference between current and potential biomass stocks globally (Erb et al. 2018). 
Increasing SOC has been identified as a significant opportunity for natural, sustainable, low-cost 
climate change mitigation, through a combination of increased sequestration from reforestation as 
well as avoidable emissions through prevented conversion (Bossio et al. 2020).  

Despite the importance of SOC stocks in ecosystem function and regulating climate, many 
uncertainties still exist around the capacity of different soil and land use types to sequester and store 
carbon and the role of forest soils in climate change abatement. 
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Forest soils in particular have considerable potential as carbon sinks (Jandl et al. 2007), but global 
estimates of forest soil carbon and potential carbon sequestration are limited by the lack of available 
data. Characterising soil organic carbon stocks in NSW forests will identify regions for climate change 
abatement efforts through targeted restoration and conversion prevention. 
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3 Drivers of change 

3.1 Key drivers of change 

Soils can take millennia to develop, but their capacity to provide ecosystem services can be 
compromised in a fraction of that time due to human-induced and natural disturbances (Williams et 
al. 2020).  

Forests across different tenures are subject to stresses which are both direct and indirect and which 
operate across scales of frequency, duration, extent and severity, including: 

• Bushfire 

• Climate change 

• Invasive species and pests 

• Forest floor disturbance 

• Land use change. 

Stresses to soil health are described in Table 2.  

Table 2 Stresses to soil health 

Stress Effect on soil 

Fire Fire can have major impacts on nutrient pools. Different nutrients may respond 
differently to each of these impacts, but certain nutrients including carbon (C), 
sulfur (S) and nitrogen (N) are particularly susceptible to fire-related losses 
(Raison 1979; Raison et al. 2009). 

Post-fire soil erosion can cause sedimentation and long-term impacts on the 
quality and quantity of water discharging from affected catchments. Fire can also 
induce soil hydrophobicity, forming water repellent layers in soil (Tulau and 
McInnes-Clarke 2016). These layers, coupled with loss of vegetation, contribute 
to accelerated post-fire erosion. 

Research conducted by Tulau and McInnes-Clark (2016) described how the 
impacts of hazard reduction burning (or managed fire) vary from those resulting 
from bushfire (unmanaged fire). Additional research is required on the impacts 
of hazard reduction burning on soils, as the effects can be more subtle and 
variable than those resulting from wildfire, where the majority of research has 
been focused (Tulau and McInnes-Clark 2016). 

The effects of bushfire are discussed further in Section 6.3. 

Climate change In addition to global temperature increase, elevated greenhouse gas 
concentrations are predicted to increase the occurrence of precipitation 
extremes: greater rainfall in already-wet areas and increased drought in already-
dry areas. These changes are likely to affect plant productivity, nutrient cycling, 
and biological populations. Climate change is also expected to increase the 
severity and frequency of bushfire, floods and pest and pathogen attacks. 

Changes in climate, coupled with an increase in the frequency and severity of 
extreme weather events, will have direct and indirect effects on soil formation, 
productivity and processes, particularly wind and water erosion (refer Table 3). 

The effects of climate change are discussed further in Section 6.3. 

Forest floor disturbance Disturbance to the forest floor can have cascading effects, manifesting as soil 
erosion and loss of soil biodiversity, organic matter, soil carbon and associated 
essential nutrients (Behre 2019).  
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Stress Effect on soil 

Forest floor disturbances, such as forestry harvesting operations, stock grazing 
pressure and the associated removal of vegetation cover, can cause the soil to 
become compacted and reduce the natural filtering action of the soil (refer Table 
3). Damage to the soil structure, in turn, impacts microbial processes and the 
capacity of the soil to contain carbon and other nutrients. If not managed 
properly, this can be detrimental to soil and water resources, potentially causing 
lower soil fertility and increased sediment delivery to streams and rivers.  

The extent of forest floor disturbance and soil degradation associated with 
forestry harvesting operations is varied and dependent on factors including tree 
species selection (quantity and chemical quality of litter, rooting depth) and the 
thinning regime. Forestry practices which minimise disturbances in the stand 
structure and soil reduce the risk of unintended carbon loss and associated soil 
health decline. (Jandl et al. 2007) 

The effects of land disturbance are discussed further in Section 6. 

Invasive species The introduction of invasive species can have profound, and not always 
predictable, effects on ecosystem processes and soil communities (Ehrenfeld 
and Scott, 2001).  

Invasive species, including weeds, insects, pathogens and animals, cause tree 
stress, decline and mortality, which in turn affects organic matter quantity and 
quality and microbial activity. They can also alter nutrient mineralization, N-
fixation by soil bacteria, mycorrhizal inoculation, decomposition and aeration 
of soils by earthworms, and aggregation of soils by fungi (Berryman et al. 
2020), all of which can affect SOC stocks. Invasive species may occur as soil 
fauna (Seidl et al. 2018), such as the invasive pathogen Phytophthora which 
causes forest dieback. 

Not unlike bushfires, invasive species can create soil conditions more 
susceptible to flash flooding, soil erosion and sediment loading. These impacts 
are exacerbated by climatic changes, as the range of invasive insects and 
pathogens is expanding. In recent decades, global trade has removed many 
dispersal barriers for species and has led to a global redistribution of forest 
pests (Santini et al. 2013).  

Land use change Anthropogenic land conversion, that is, land clearing followed by a new land use, 
such as grazing or plantation forestry, can lead to complex biophysical and 
biogeochemical feedbacks. Land use change may alter soil processes such as 
surface energy balance, hydrologic flow (Croke & Hairsine 2006), and 
biogeochemical cycling of essential soil nutrients.  

A loss of surface vegetation cover can result in changes in surface energy 
balance, increasing the rate of evaporation and the temperature of the soil 
(Behre 2019).  

Land use changes which increase vegetation cover, such as those which result 
from afforestation and management of fast-growing tree species, also impact 
soil processes and regional rates of carbon sequestration (Jandl et al. 2007). 

3.2 Potential impacts to soil health 

Table 3 describes the impacts that disturbances and stresses can have to soil health and stability. 

Table 3 Impacts to soil health 

Impacts to soil health Description 

Erosion Erosion is an insidious form of land degradation which progressively removes 
topsoil, which is where most of the soil carbon is stored. Continued erosion 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

9 

Impacts to soil health Description 

 reduces soil quality and the capacity of the soil to hold water and nutrients 
which support plant life. 

Water erosion results from rainfall impact and surface water flow. Roads and 
trails can act as channels during rainfall events and increase the velocity and 
volume of the water as it flows downhill. Erosion can contribute significantly 
to the deterioration of waterways, the deterioration of soil fertility, and the 
release of greenhouse gases into the atmosphere. 

Wind erosion is the detachment and movement of soil particles by air moving 
at least 20km per hour. Soils release dust into the air. Airborne dust 
contributes to carcinogenic outdoor air pollution, where there is a close 
relationship between exposure to high concentrations of small particulates 
and increased risk of respiratory infections, heart disease and lung cancer 
(WHO 2018).  Airborne dust in NSW over periods of 2019 has repeatedly 
broken records for activity and concentration, coinciding with historic lows in 
groundcover (DPIE 2019b, 2019c). 

Decline in soil structure Soil structure is the architectural arrangement of soil particles and the voids 
between them. Soil structure defines the physical component of soil condition 
as it governs water and gas exchange between the atmosphere and the soil. It 
is sensitive to biological activity, groundcover, management actions and, in 
some soils, changes in moisture content or salinity. 

Soil structure is not only important for preventing sediment erosion into water 
supply systems, but also in preventing landslides. Forests with higher rainfall 
and steeper terrain have the most to lose in terms of soil retention (McCormick 
and Showers, 2019). 

A decline in soil structure can have a marked impact on soil fertility and an 
increase in greenhouse gas emissions, including carbon dioxide and nitrous 
oxide. A decline in soil structure can take a considerable amount of time and 
money to correct (Chapman et al. 2011). 

Degradation and loss of 
soil carbon 

 

When soils are disturbed or eroded, the carbon and other greenhouse gases 
they contain (including methane and nitrous oxide) can be released, causing 
these soils to act as a source of greenhouse gas. Anthropogenic influences, 
accelerated by the impacts of climate change, can deplete soil carbon stocks. 

Carbon held in soils generally cycles more slowly than carbon in other 
ecosystem pools, subject to natural fluctuation based on inputs, such as leaf 
litter, dead roots and fungal and bacterial cells and residue, and outputs, such 
as leaching, erosion and emission by fire (Nave et al. 2019). Anthropogenic 
influences, such as land conversion, soil disturbance and agricultural 
intensification, accelerated by the impacts of climate change, deplete soil 
carbon stocks. 

Disruption to nutrient 
cycles 

 

The impact of human disturbance on forest soils and nutrient cycles, including 
impacts from agriculture, forestry and urbanization, have been increasing in 
intensity and extent during the last century (Richter 2007). 

Nutrients needed to drive photosynthesis in plants, such as nitrogen (N), sulfur 
(S), phosphorus (P), potassium (K) and boron (B), are cycled within forest 
ecosystems. These nutrients are taken up by plants and returned to the soil in 
above ground and below ground litter inputs (Prescott 2020; Rustad et al. 
2020). 

Disruption to this cycle alters the availability of nutrients for plant growth, and 
in fact, nutrient supply is often the factor which limits the growth potential of 
vegetation. 
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Impacts to soil health Description 

Acidification In NSW, most forest soils are slightly acidic. However, increasing acidity caused 
by land-use practices (often referred to as induced soil acidification) can have 
significant negative impacts on soil condition and plant growth. 

Acidity can stunt plant growth, disturb nutrient cycles and result in the 
acidification of waterways. 

Salinisation Soil salinity occurs naturally across much of NSW, with high levels of soluble 
salts stored in the soil and groundwater as a result of landscape processes 
occurring over many thousands of years. In some areas, 'induced' salinity 
results from human activities altering the water balance in the landscape. 
When this occurs, stored salts are often remobilised and migrate to the ground 
surface, killing vegetation and altering soil structure (Chapman et al. 2011). 
Soil salinity has been found to impact eucalyptus growth height, stem 
diameter, crown volume and mean leaf area (Benyon et al. 1999). 

Soil salinity can also cause severe stress to soil organisms, leading to their rapid 
desiccation (Turbé et al. 2010), and can cause profound terrestrial and aquatic 
ecosystem damage through impacts on water quality both from salt and 
associated erosion. 

Loss of biodiversity and 
ecosystem resilience 

Soils are not only a main repository of terrestrial biodiversity, harbouring one 
quarter of all species on Earth, but evidence is mounting that soil biodiversity 
contributes significantly to shaping aboveground biodiversity and the 
functioning of terrestrial ecosystems. For example, soil organisms have been 
identified which induce plant defence responses to above ground pests and 
herbivores (Turbé et al. 2010). Soil organisms are also vitally important in the 
soil carbon cycle, where they decompose dead biomass and release carbon 
dioxide via respiration. 

There is also evidence that mutualist fungi, particularly ectomycorrhizal fungi 
(EMF) are integral to forest tree health (e.g., Sapsford et al. 2017) and in some 
cases mycorrhizal fungal frequencies are linked to canopy condition and 
dieback (Ishaq et al. 2013). 

These habitats are dynamic, responding to natural and human-generated 
disturbances, such as compaction, bushfire, invasive species, and climate 
change (Yarwood et al. 2020). Loss in soil biodiversity reduces ecosystem 
functions and impairs their stability over time (Bardgett & van der Putten 
2014). 

Research on soil response to land use change suggests that soil communities 
respond and recover much more slowly than initial changes in vegetation and 
that it can take years, if not decades, before the soil community has become 
adapted to the changed environmental conditions and establish new equilibria 
(Turbé et al. 2010). 

While some disturbances to soil communities are inevitable, such as seasonal 
variation, the accumulation of simultaneous stresses due to anthropogenic 
disturbances and climate change intensification (e.g., bushfire, drought, the 
use of pesticides, fertilisers or tillage) can alter the functioning of the 
ecosystem (Griffiths et al. 2000; Turbé et al. 2010). 

 

Soils can be safeguarded against disturbances by protecting and improving the physical, biological and 
chemical components to maintain the resilience and productivity of the system.  
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4 Indicators of soil health and stability 

4.1 Overview 

The status of soil indicators is a product of the soil forming factors of climate, parent material, 
topography, biota and time, as recognised by pioneering soil scientists Dokuchaev (1889) and Jenny 
(1941) (refer Section 6). Each of these soil-forming factors can be represented by multiple sub factors.  

The indicators presented here are those which are likely to detect change over a relatively shorter 
timescale, such as those influenced by human activity or recent changes in climate (adapted from 
Amacher et al. 2007; Burger et al. 2010; Chapman et al. 2011). 

They were selected based on the findings of the literature review (Milford 2021) and align with the 
criteria of the Ecologically Sustainable Forest Management (ESFM) Criteria and Indicators (NSW EPA 
2016) and the Montréal Process (Montréal Process Implementation Group for Australia and National 
Forest Inventory Steering Committee 2018). 

The main functions of a healthy soil (refer Figure 2) fall broadly into three categories of measurement: 
physical, biological and chemical. 

These functions are interdependent and while there is no one indicator of soil quality, the following 
metrics can be used to quantify the soil’s ability to perform these functions and can be monitored over 
time. When viewed together, these metrics indicate how and to what extent a soil may be becoming 
degraded (refer Section 2.2). 

Future monitoring efforts should incorporate flexibility such that sampling is focused on data 
collection of indicators with the most significant input values. The feasibility of assessing these 
indicators holistically in a combined index is discussed further in Section 8.6. 

Soil properties that can be used to measure the health of the soil are outlined in Table 4. 

Table 4 Indicators of soil health 

Measurement type Soil health indicator 

Physical Topsoil depth 

Bulk density 

Aggregate stability 

Particle size analysis 

Biological Microbial biomass  

Fungal : bacterial ratio 

Mycorrhizal fungal assemblages 

Chemical Total soil organic carbon 

Carbon fractions 

Mineral N (NO3+NH3) 

Phosphorus 

pH 

EC 
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4.2 Physical indicators of soil health 

4.2.1 Topsoil depth 

Topsoil depth is a surrogate for rooting depth. Change in topsoil depth is indicative of soil loss and 
decline in soil structure. This is a helpful indicator in areas of anticipated erosion. 

4.2.2 Bulk density 

Bulk density is an indicator of soil compaction and is the weight of dry soil per unit of volume. 
Increased bulk density can represent a decrease in water infiltration, available water capacity, soil 
porosity, plant nutrient availability, and soil microorganism activity, all of which can influence key soil 
processes and productivity. The indicator is change in soil structure because some soils may naturally 
have poor structure (Chapman et al. 2011). 

Bulk density is typically expressed in grams/cm3. Bulk density measurements are also required to 
calculate carbon stocks (t/ha). 

4.2.3 Aggregate stability 

Soil aggregate stability is a measure of the ability of the soil to resist disintegration when disruptive 
forces are applied. 

Soil aggregates are groups of soil particles that bind to each other more strongly than to adjacent 
particles. When unstable aggregates are impacted by rain, soil aggregates may slake or disperse. 
Dispersed soil particles fill surface pores and a hard physical crust can develop when the soil dries. 
Infiltration is reduced, which can result in increased runoff and water erosion, and there is a reduction 
in water availability in the soil for plant growth. A physical crust can also restrict seedling emergence 
(Kemper & Rosenau 1986). 

Soils with high sodicity, or excessive sodium, (i.e. sodic soils) are more prone to slaking, dispersion and 
the development of crusts and hardset layers. 

4.2.4 Particle size analysis 

Particle size indicates soil texture. Soils consist of an assemblage of ultimate soil particles (discrete 
particles) of various shapes and sizes. Particle size analysis groups these particles into separate ranges 
of sizes and determines the relative proportion by weight of each size range. 

4.3 Biological indicators of soil health 

4.3.1 Microbial biomass 

Soil organisms, including nematodes, collembola, fungi and bacteria, are responsible for a cascade of 
intricate soil functions such as nutrient cycling, biodegradation of pollutants and soil carbon storage. 

Microbial biomass represents the living component of SOC and is considered an estimate of biological 
activity. It indicates the availability of nutrients in the system and its overall fertility. 

4.3.2 Fungal to bacterial ratio 

The fungal-to-bacterial ratio is a measure of the proportion of the microbial community that is 
bacteria, compared to the proportion that is fungi.  
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Fungal-dominated soils enhance C storage because they have slow C turnover rates and are typically 
credited with greater growth efficiency (biomass production) compared to bacteria. Declines in fungal 
ratio are linked to fertiliser and herbicide application.  

This measure is therefore a useful tool in determining how quickly nutrient turnover can happen in a 
soil system and how prone the system is to leaching. 

4.3.3 Mycorrhizal fungal assemblages 

Mycorrhizal fungi, and in particular arbuscular mycorrhizal fungi (AMF), are emerging as not only 
indicators, but also key determinants, of soil health (Bardgett & van der Putten 2014). AMF can 
significantly improve plant nutrient uptake and can determine the performance of plant communities. 

Measuring mycorrhizal fungal assemblages provides a sensitive tool to assess soil functionality and 
may provide an indication of the susceptibility of a system to invasive species. They are also good for 
tracking understorey growth following disturbance. 

4.4 Chemical indicators of soil health 

4.4.1 Total soil organic carbon 

Soil organic carbon (SOC) is an indicator and key component of soil health. High SOC results in greater 
water and nutrient retention, creating the necessary conditions for above-ground carbon stores (plant 
biomass) to thrive. High SOC also improves soil structure which can reduce erosion.  

Soil carbon is a commonly proposed (and used) key or ‘headline indicator’ in soil monitoring programs 
nationally and internationally (Wilson et al. 2010). 

From a carbon accounting perspective, SOC monitoring data can be used to assess the net loss or gain 
of carbon density across various land use/land management scenarios and provides a minimum 
dataset to underpin soil carbon inventory and potentially, soil carbon trading. 

When assessing SOC, surface soil samples are critically important because soil carbon decreases 
dramatically with depth (Chapman et al. 2011). 

4.4.2 Carbon fractions 

SOC is composed of a mix of particles and materials in different states of, and with different 
susceptibilities to, decomposition. These various components can be isolated and allocated to 
biologically significant fractions (Wilson et al. 2017). 

These carbon fractions are typically described as particulate organic carbon (POC), derived largely 
from fresh organic inputs, humic organic carbon (HOC), which is typically composed of microbially 
altered materials associated with mineral particles in soils, and biologically resistant organic carbon 
(ROC), with a charcoal-like character dominated by poly-aryl carbon groups (Wilson et al. 2017). 

Carbon fractions have different degrees of stability and turnover rates and can indicate the status of 
the soil carbon cycle. These fractions, when viewed together, provide an indication of the 
susceptibility of a soil to carbon loss. 

4.4.3 Mineral N 

Nitrogen (N) is an important element in terrestrial ecosystems. It is a major limiting nutrient for plant 
growth and is therefore crucial to ecosystem productivity and soil health. N in soil has been found to 
be strongly correlated with wood production (Turvey and Smethurst 1994). 
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Monitoring N (like phosphorus, described below) is important because minor changes can indicate 
both a loss of fertility in the land being assessed, as well as an influx of the nutrient into sensitive 
surrounding soil and water systems. 

4.4.4 Phosphorus 

Phosphorus (P) is another important element in terrestrial ecosystems. It is a major limiting nutrient 
for plant growth and is therefore crucial to ecosystem productivity and soil health. P in soil has also 
been found to be strongly correlated with wood production (Turvey and Smethurst 1994). 

P accumulation occurs in soils over thousands of years during pedogenesis (Walker and Syers 1976). 
The natural distribution of soil total P is thought to have undergone spatial changes linked to shifts in 
climate (Zhu et al. 2021) and biome migrations (Siebers et al. 2017) over decades and centuries. 

Soil P exists in two forms: organic and inorganic, which together make up the measure of total soil P. 
However, not all soil phosphorus is available for plant uptake. This is expressed as available P. 

Phosphorus is often considered in an agricultural context, but above ground plant production in 
natural ecosystems is also significantly limited by P availability (Hou et al. 2020), suggesting that the 
importance of altered P supply in natural ecosystems has been underestimated. Identifying ultimately 
limiting nutrients is important because alterations in their supply have the capacity to transform the 
structure and functioning of ecosystems (Vitousek et al. 2010).  

An issue affecting many native ecosystems (especially near urban centres and agricultural lands) is 
raised P levels in soils and waterways – this leads to weeds (and blue green algae in waterways).  

For native forest ecosystems, it is the change in P that is crucial, as this can indicate loss of P from the 
system to which it belongs, into other sensitive environments. 

4.4.5 pH 

The acidity of forest soil affects a wide range of ecological processes, including the solubility and 
exchange reactions of inorganic nutrients and toxic metals, the activities of soil animals and 
microorganisms, and the weathering of soil minerals. 

The acidity or alkalinity of soils is measured by soil pH, which is the negative log of the hydrogen ion 
concentration on a scale of 1 to 14, where 7 is neutral, below 7 is increasingly acidic and above 7 is 
increasingly alkaline. Soil pH is typically determined and reported for soil monitoring purposes using a 
0.01M CaCl2 solution as it is less susceptible to seasonal variation than a pH in water. In NSW, soils 
have a wide range of pH values, with many being naturally acidic. 

Soil pH is determined by the balance between the production and consumption of soil hydrogen ions, 
which is closely associated with nutrient cycles (e.g., carbon, nitrogen, phosphorus, sulfur and 
calcium). Changes in soil pH can alter the availability of nutrients, impact biogeochemical processes 
and have cascading effects on terrestrial ecosystem structure and functions.  

Some native forest soils already have very low pHs. Thus, when assessing forests, pH will be assessed 
as a measure of change, rather than a fixed value. 

4.4.6 EC 

Electrical conductivity (EC) is used to measure salinity. It is influenced by the concentration and 
composition of dissolved salts. Salts increase the ability of a solution to conduct an electrical current, 
so a high EC value indicates a high salinity level. 
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5 Distribution of available soil data 

5.1 Information sources 

The primary source for soil information in NSW is the Soil and Land Information System (SALIS). This 
database is managed by the Soil and Landscape Assessment Team in the Department of Planning, 
Industry and Environment and forms the basis of our understanding of soil conditions across the state. 
SALIS contains over 70,000 soil profiles, most of which include laboratory data where samples 
collected from the profile have been analysed.  

The soil data used to estimate baselines and trends in this report (Section 6) were mainly derived from: 

• NSW DPIE soil survey information, and 

• The NSW Monitoring, Evaluation and Reporting (MER) program. 

The majority of soil data for the state comes from these two sources. A small portion of the dataset 
comes from other NSW and Federal Government and non-government sources.  

This NSW information was supplied and modelled by our team to contribute to the Australian Soil 
Resource Information System (ASRIS), an effort to produce a national soil database (Johnston et al. 
2003; McKenzie et al. 2012). 

5.1.1 Soil survey 

Most available soil information in NSW has been collected during 1:100,000-scale soil landscape 
surveys, which began in the 1990s (refer Section 5.3). The objective when collecting these profiles is 
to provide supporting evidence to classify the soil type(s) of a broad region (soil landscape).  

The sampling methodology used by each soil survey varies depending on when, where and by whom 
the survey was conducted. For example, the depth from which a sample was collected varies from one 
location to the next, and many locations have only been analysed for a limited set of indicators. As a 
result, the available data for each profile location range in detail and representativeness.  

Around 2,000 of these locations fall within forest areas of the RFA regions, (refer Figure 3): some 
include laboratory data (refer Table 6) and others are limited to soil descriptions. 

Soil survey data provide valuable background information, but lack the following key elements of a 
monitoring program which enable measurement of soil health and stability through time: 

• These profile locations were never revisited and only exist as single point-in-time data. 
Without repeat sampling of these locations, the data are insufficient to measure soil change 
through time.  

• The profiles are not paired to reference sites (refer Section 2.1), so the data tell very little 
about the condition of the soil relative to what would be an optimal, functional state for that 
ecosystem. 

These factors serve as limitations to the accuracy and reliability of digital soil mapping efforts based 
on these data (refer Section 7.2). Spatial analysis does, however, provide a lens through which to 
visualise the data and an indication of likely trends (refer Section 6). 

5.1.2 State-wide monitoring 

In Australia, individual states have typically committed limited and episodic resources to soil 
monitoring, with similarly discontinuous injections of resources from the Federal level; since 
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monitoring requires consistent long-term effort, very little coherent monitoring of soils has been 
achieved in most jurisdictions (Milford 2021). 

The NSW Government’s most intensive effort to monitor soils came under the NSW Monitoring, 
Evaluation and Reporting (MER) program, conducted by the NSW Department of the Environment, 
Climate Change and Water, now DPIE, in 2008-09 (Bowman 2009; Chapman et al. 2011; OEH 2014).  

The program, initiated by the NRC, aimed to monitor and evaluate soil condition across NSW. It 
comprised over 800 sites and where possible, sites were paired on the same soil type across different 
land uses, including ‘reference’ sites where the soil was considered to be in a less disturbed state.  

Site selection involved the identification of issues from regional natural resource management staff 
and a stratification process to identify representative combinations of soil, land-use and 
environmental factors. Each site included a program of soil data collection and laboratory analysis, 
together with collection of land management information. 

The MER program intended to resample monitoring sites on a rolling 5 year program, but no follow-
up funding was ever forthcoming. As such, only a small number of these sites (approximately 60) have 
ever been resampled, and this was undertaken by academic institutions (UNE).  

41 MER sites fall within forests of the RFA regions. These data have been incorporated into the models 
of estimated baseline conditions presented in Section 6, and future forest soil monitoring efforts 
should incorporate these sites (refer Section 8). 

5.2 Spatial distribution 

There are approximately 2,100 total profile points with suitable laboratory data from across the RFA 
regions from SALIS and the MER program. Available data points are shown in Figure 3. 

 

Figure 3 Spatial distribution of soil profiles with laboratory data across RFA regions 

 

MER profile with lab data 

SALIS profile with lab data 

Forest extent 

Regional Forest Agreement 
regions/subregion 
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Figure 3 shows the lateral distribution of the data. The vertical distribution of the data used in the 
digital models (Section 6) is also varied, where soil samples were collected from a range of depths. 

Table 5 describes the number of soil profiles by tenure and management status. Management status 
is an approximation based on forest management zones (NSW Government, 2018; State Forests NSW, 
1999), discussed further in Section 6.1.2. 

Table 5 SALIS and MER data by tenure and management status 

Information 
source 

Tenure 

Management Status 

Total 
Reserved 

Forestry 
operation  

Unprotected / 
Private and 
leasehold 
lands 

SALIS NPWS 673 

  

673  

State Foresta 179 393 

 

572  

Private 

  

773 773  

      Total 

   

2018 

MER NPWS 9 

  

9  

State Foresta 1 8 

 

9  

Private 

  

23 23  

       Total 

   

41 

abased on Forest Management Zones: Reserved: FMZ 1, 2 3a&b; Forest operation: FMZ 4 – 7 including harvest and plantation operations, 
refer Section 6.1.2 for further detail. 
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5.3 Temporal distribution 

Figure 4 presents the spatial distribution of SOC profile data points across RFA regions for different 
time slices. As shown, very little monitoring has been undertaken in the last decade. 

 

Figure 4 Temporal distribution of surface soil organic carbon measurements across RFA regions  

Most soil data were collected in the 1990s, following initiatives such as the ‘Decade of Landcare.’ 
Initiated in 1989, this program aimed to increase the adoption of sustainable land management 
practices by land managers and therefore, like the vast majority of soil information collection in NSW, 
focused largely on agricultural land. Since this period, funding for soil data collection has declined 
within state and federal government departments. 

Where it has been collected, updated and current soil information from NSW’s forested lands, 
whether in public or private ownership, has generally not been shared. For example, Forestry 
Corporation of NSW collect soil regolith information within the RFA regions from state forests as part 
of an inherent soil erosion and water pollution hazard assessment prior to timber harvesting and 
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commencement of roading operations in native forests as a requirement of the Coastal Integrated 
Forestry Operations Approvals.  This information is not submitted to the NSW Soil and Land 
Information System and is thus not available for this analysis.  

 

Figure 5 Spatial distribution of surface soil organic carbon measurements across RFA regions  

 

5.4 Critical data gaps 

As demonstrated in Table 6, the number of profiles with sufficient data within the RFA regions is 
limited. 

Of the data held in the NSW Soil and Land Information System (SALIS), there are no measurements of 
soil biological health indicators from the area. In the last decade, less than 50 soil carbon 
measurements have been collected from across the RFA regions. No bulk density measurements have 
been collected during this time, which are needed for accurate calculation of belowground carbon 
stocks. Available measurements of other physical and chemical soil health indicators are similarly 
limited. 
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Table 6 Available data for soil health indicators 

Measurement type Soil health indicator 
Total sites sampled a (approximate) 

Historical (pre-2010) Current (2010+) 

Physical Bulk density 41b 0 

Aggregate stability 1,360 40 

Biological Microbial biomass 0 0 

Fungal : bacterial ratio 0 0 

Mycorrhizal fungal 
assemblages 

0 0 

Chemical 

 

Total soil organic carbon 1,680 40 

Carbon fractions 430 0 

Mineral N (NO3+NH3) 970 30 

Phosphorus P extractable: 1,360 40 

pH 1,900 100 

EC 1,900 100 

Notes:  

a The exact number of profiles used in the spatial modelling approaches may vary slightly depending on how the data has been sourced for 
use. 

b MER NSW forest dataset used to identify change, building on base maps from SLGA  

Particle size analysis and topsoil depth are not included in this table. Particle size analysis is only taken once, used in calculation of other soil 
qualities rather than a stand-alone measure. Topsoil depth is used to compare the same site through time and is not relevant as a stand-
alone measure. 
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6 Estimated historic baselines and trends 

6.1 Methods 

Baseline values for the key indicators were estimated as follows: 

• First, we evaluated the available data using an empirical approach, which simply presents 
the value of an indicator for each location, regardless of when the sampling occurred. 
Temporal changes are not accounted for.  

• Then, we used digital soil modelling (DSM). DSM enables a comparison of data collected at 
different times by incorporating variables which represent temperature, precipitation, 
vegetation cover, soil moisture and other factors. We used this method to produce 
estimated baseline values of the key indicators for which we have data.  

• The results of these methods were supplemented by the outputs of an experimental space-
time model. The model holds promise but is limited by soil data sparsity and does not 
currently estimate any indicators other than soil carbon. The space-time model provides a 
workflow and prototype for future modelling of forest soil conditions, which will be more 
applicable after further investment in soil sampling. 

Detailed methodologies are included in project update reports: the empirical method and the digital 
soil modelling and mapping are provided in Appendix A, and the space-time modelling approach in 
Appendix B.  

6.1.1 Empirical data by soil landscape 

Soil landscapes are regions which have been determined by soil scientists to share like soil and 
landscape properties, and therefore have similar properties and management considerations. All soil 
landscape units have records identifying location of soil data points; type of survey (e.g., MER, soil 
landscape mapping); and soil field and laboratory data (if available). 

These map units come from soil surveys, mostly at 1:100,000 scale, and range in detail and confidence.  

Sampled locations occur within the landscape units and vary in terms of their representativeness of 
the landscape. For example, if samples are collected from an area of the soil landscape that is unusual, 
such as a slope in an otherwise flat area, these data cannot be considered to represent the whole 
landscape. 

The representativeness of a soil profile is determined based on the following ranked criteria: 

• Location within forest area: soil profiles which fell into the RFA regions forest area were 

included.  

• Soil landscape unit: soil profiles were sorted based on the soil landscape units in which they 

were located. 

• Laboratory data availability: soil profiles were sorted based on laboratory data availability 

(some monitoring locations did not have any samples collected and/or analysed). 

• Representative ‘type profile’ status: ‘type profile’ designation belongs to soil profiles 

considered representative of the most common soil type in some portion of the soil landscape. 

Type profiles are generally assigned to each ‘facet’ or part of a landscape that has a different 

soil type (soil property) and generally for each management consideration within the 

landscape. Since facets are not defined in our published soil landscape linework, identifying 

the ‘type profile’ information of the largest facet is an important way to represent soil 

attributes for an entire map unit. Type profiles for a landscape may fall outside of the forest 
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area. In some cases, a soil profile in forested land was selected ahead of a designated ‘type 

profile’ because of the significant affects that a forested land use has on surface soil 

properties, particularly organic carbon. 

• Forest condition representativeness: where multiple soil profile locations occur within the 

forest area within a landscape unit, this measure distinguishes soil profiles characterised by 

forested land management, prioritising them over soil data from cleared or pasture areas, for 

example. 

Based on the above criteria, a soil profile was selected to represent each soil landscape unit, and the 
field and laboratory results for each soil property are considered to be representative of the whole 
landscape unit. 

The resulting quality categories for the soil landscape profile data were as follows: 

• High confidence: a profile with laboratory data within the forest area and within the dominant 

facet of the landscape unit. 

• Moderate confidence: a profile with laboratory data within the forest area but not within the 

dominant facet of the landscape unit. 

• Low confidence: no profiles with laboratory data within the forest area, but representative 

lab data available for another part of the landscape. 

• No data: no profiles with laboratory data exist within the landscape. 

Temporal changes are not accounted for. For example, the empirical approach may present a soil 
carbon concentration at Location A, sampled in 2000, beside a soil carbon concentration at Location 
B, sampled in 2018. 

6.1.2 Digital soil mapping and modelling 

Digital soil mapping provides for statistically verifiable estimates of soil properties using quantitative 
modelling techniques based on relationships between soil properties and the environment 
(McBratney et al. 2003). The statistical relationships are developed over known soil data points with 
known environmental conditions and then extrapolated over broad regions using continuous 
environmental data grids (e.g. climate grids, digital elevation models or gamma radiometric data 
grids). An early example of digital soil mapping was undertaken over the forests of south-east NSW by 
Ryan et al. (2000), however they used the term “environmental correlation”. 

The modelling approaches applied in this project were multiple linear regression (MLR) and Random 
Forest (RF) decision tree methods. The two different approaches do not give identical results but there 
is typically high consistency between them. They provide valuable data for identifying key drivers of 
each soil condition indicator. 

Modelling of soil properties was carried out using R statistical software (R Core Team 2020). The soil 
dataset was apportioned 80% as training data and 20% as validation data using a simple random data 
splitting approach. Detailed methodology is provided in the update reports (Appendix A). 

The modelling process relied on additional variables to represent the main soil forming factors of 
climate, parent material, topography, biota-land management and age of soil (Jenny 1941), together 
with a bushfire-related variable, as described in Table 7. 
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Table 7  Variables included in digital soil model 

Description of variable Name Source 

Mean annual rainfall over this 20 year 
period 

Rain_1990_2010 sourced from SILO (Scientific Information 

for Land Owners) Climate data used for 

Climate change projections were 

accessed from the NARCliM program. 
Mean annual daily maximum temperatures 

over this 20 year period. 

Tmax_1990_2010 

Mean annual daily minimum temperatures 

over this 20 year period. 

Tmin_1990_2010 

Approximate silica content (%) of the 

parent material, which relates to its 

lithology and the resulting soil type (Gray 

et al. 2016). 

Silica_index The statewide grid is based on geological 

mapping (DPI Geological Survey of NSW, 

undated) and NSW soil and land 

mapping from eSPADE (DPIE 2021). 

Radiometric potassium, uranium and 

thorium, an indicator of parent material 

chemistry. 

Radk, Radu and 

Radth 

Geoscience Australia (Minty et al. 2009) 

The relative proportion of these clays 

derived from near infra-red (NIR) 

spectroscopy (Viscarra Rossel 2011). 

Kaolinite, Illite 

and Smectite 

TERN data, CSIRO Data Access Portal 

Weathering index, representing the degree 

of weathering of parent materials, regolith 

and soil, based on gamma radiometric data 

(Wilford 2012), an indicator of the age of 

the soil and landscape. 

W_index Geoscience Australia 

Topographic wetness index, representing 

potential hydrological conditions (Gallant 

and Austin 2015). 

TWI CSIRO Data Access Portal 

Forest disturbance index (FDI): a new index 

developed for this project which coarsely 

reflects forest management. The FDI 

enables distinction between forest reserve 

areas, both formal and informal (FDI 1) and 

forest harvest areas (FDI 2). All remaining 

woody area was allocated FDI 3, being 

identified as privately owned or leased 

forest typically subjected to periodic stock 

grazing (see Table 8). 

FDI This was derived by combining maps of 

NPWS estate, Forest Management Zones 

map (Forestry Corporation of NSW 2020) 

and NSW land use 2017 maps (DPIE 

2020a). 

Total vegetation cover (%); includes photo-

synthetic (living) and non-photo-synthetic 

(dead) vegetation cover, being average 

(mean) cover from year 2000 to date of 

sampling. 

Total_VegCov CSIRO MODIS fractional vegetation data 

(Guerschman and Hill 2018) 

The number of years since a major bushfire 

(This does not include hazard reduction 

burns). For training data: the number of 

years prior to the date of sampling; for 

mapping the number of years prior to 

2010. 

Years_since 

Bushfire 

Rural Fire Service (via NRC data portal) 

The analysis of trends in soil condition applied DSM techniques with a ‘space-for-time substitution’ 
process (refer Appendix A).  This process involves use of current spatial patterns to predict past or 

https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW
http://espade.environment.nsw.gov.au/
https://data.nsw.gov.au/data/dataset/forest-management-zones
https://datasets.seed.nsw.gov.au/dataset/nsw-landuse-2017-v1p2-f0ed
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future trajectories of ecological systems (Pickett 1989; Blois et al. 2013). Spatial patterns are used to 
represent temporal patterns. Limitations of this methodology are further described in Section 7.2. 

The Forest Disturbance Index (FDI) was developed for this project to assess broad trends with human 
disturbance, based on land tenure and management systems (see Table 8). FDI 1 represents lands 
generally associated with less land use disturbance (e.g. protected zones within State Forests), 
whereas FDI 3 represents lands generally associated with higher levels of land use disturbance (e.g., 
private lands subject to periodic grazing). If private forestry lands did not fall within a Forest 
Management Zone, but were private and leasehold land, they were categorised as FDI 3. 

The FDI is a coarse and simple measure of forest management and each FDI category may be subject 
to a range of disturbance types. For example, within FDI 2, some native forests may only be very lightly 
logged and disturbed whilst others may be more intensively logged with significant soil disturbance 
and forest cover reduction. Similarly, some more highly disturbed forest management zones may also 
include relatively undisturbed riparian exclusion corridors.  

This scale of modelling does not distinguish between areas subject to different harvest plans and those 
in narrow exclusion corridors. Additional data collection through future monitoring efforts would 
allow for finer scale models which could capture these distinctions. 

Table 8 Forest tenures, zones and Forest Disturbance Index 

Tenure Zone Forest Disturbance Index (FDI) 

NPWS estate All 1 

Forest Management Zonesa  Zone 1 - Special Protection Zone 1 

 Zone 2 - Special Management Zone 1 

 Zone 3A - Harvesting Exclusions 
Zone 

1 

 Zone 3B - Special Prescription Zone 1 

 Zone 4 - General Management 
Zone 

2 

 Zone 5 - Hardwood Plantations 
Zone 

2 

 Zone 6 - Softwood Plantations Zone 2 

 Zone 7 - Non Forestry Use Zone 3 

 Zone 8 - Areas for further 
assessment 

2b 

 Zone 90 – Unzoned 3 

Private and leasehold lands All  3 

a NSW Government (2018); State Forests NSW (1999) 

b This was incorrectly allocated as FDI 3 in the current study 

In the analysis of trends with human disturbance, the model was run with an FDI 1 (relatively 
undisturbed state) hypothetically applied across the entirety of the RFA regions. Then, the model was 
rerun with the current (approx. 2010) disturbance status (ie, FDI 1, 2 and 3) to assess the influence of 
the changed disturbance regime. The difference between the two modelled outputs provide an 
indication of the change. Further detail and method flowchart are provided in Appendix A, Update 5.  



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

25 

For several soil indicators, no clear trends with forest disturbance index were discernible, but trends 
were evident for SOC and bulk density (refer Section 6.3). Similar approaches were applied in assessing 
trends in soil indicators with projected climate change (Gray and Bishop 2018, 2019) and bushfire 
recovery periods (Gray 2021). Other datasets on forest disturbance, such as forest harvesting history 
as applied in the Carbon Balance project of the FMIP, could be used as an additional variable to 
enhance future analysis. 

Modelling of changes and trends in hillslope sheet erosion was based on RUSLE, following methods 
established in Yang (2020). The baseline erosion rates, generated by applying the highest 100th 
percentile groundcover (year 2001 to 2020), were compared with the current erosion rates and the 
relative changes calculated. 

6.1.3 Space-time framework for digital soil modelling 

The results of the empirical and DSM methods were supplemented by the outputs of an experimental 
prototype model. The model uses a machine learning space-time framework, referred to as the data 
cube (refer Appendix B). 

The data cube is a digital platform built to predict soil health. It uses a data-driven approach, 
combining machine learning and geospatial technologies. Although the data required are currently 
limited (refer Section 5), the data cube provides estimates of trends in soil organic carbon through 
time (refer Section 6.3) and can be incorporated into future work.  

The inclusion of the temporal dimension distinguishes this method from the above digital soil mapping 
approach. Where the DSM compares two outputs (e.g. current state vs. predicted state), the data 
cube integrates potential predictors that vary in space, time and space, and time (refer Appendix B). 

Each measurement of soil organic carbon has a spatial location and date of sampling. From this, values 
are estimated for a range of covariates such as weather, terrain attributes and remote sensing for the 
same location and time.   

This approach has only been possible in the past decade with free and open access to continental scale 
datasets for terrain (Grundy et al. 2015) and remote sensing platforms (e.g. Landsat, MODIS, Sentinel) 
providing weekly images across the world (Lewis, Oliver et al. 2017).  

Table 9 gives an overview of the description of the datasets processed and collated into a data cube 
for modelling. The data cube consists of SOC measurements, the month and year of profile sampling, 
as well as the space, and space and time covariates associated with the soil profile locations. 

Table 9  Variables included in data cube 

Data type Covariate Source Resolution Note 

Response SOC SALIS - 0-30cm depth 

Spatial DEM, slope Geoscience 
Australia 

90 m - 

Topographic 
Wetness Index 
(TWI), Multi-
resolution Valley 
Bottom Flatness 
(MrVBF) 

ASRIS 90 m - 

Gama-radiometric 
data: Potassium; 
Uranium; Thorium; 
Radiation dose 

SLGA 90 m - 
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Data type Covariate Source Resolution Note 

Silica - ~100 m - 

Clay % (0-5) SLGA 90 m - 

Spatial & temporal Precipitation SILO 5 km, monthly - 

Temperature (min 
and max) 

SILO 5 km, daily - 

Solar radiation SILO 5 km, daily - 

NDVI LANDSAT 30 m, 16-day - 

 

All time-varying covariates (NDVI and climate variables) were aggregated to monthly values. Since the 
effect of these covariates on soil health dynamics depends on current and past conditions, a decay 
function weighting algorithm was applied to aggregate sixty months (5 years) of the covariate 
timeseries prior to when the soil profile was sampled. The algorithm attaches more weight to the most 
recent observations. Feature extraction by this method (instead of taking the mean value over the last 
5 years) has been shown to create better predictive models (Wimalathunge and Bishop 2019). 

Another key feature of the data cube is the incorporation of the proxy for natural and anthropogenic 
disturbances of SOC dynamics at the time of soil profile sampling, compared to conditions at discrete 
times in the past (refer Appendix B). The potential effect of these disturbances is represented in the 
data cube by incorporating NDVI difference features wherein the NDVI of the previous 1, 2, 3, 6, and 
12 months are subtracted from the NDVI of the month of profile sampling.  

Sources of variation considered in this approach included differences in depth characteristics of the 
soil profiles, as well as the use of different analytical methods between laboratories and survey 
campaigns. 
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6.2 Estimation of current status 

Sophisticated modelling enables an estimation of soil health indicators across the study area, given a 
range of key parameters. A wider range of data and calibration is required in order to refine the results 
of these models and broaden their application (refer Section 7.2). These products are to be viewed as 
a first approximation and will be subject to change when more recent and more representative field 
data become available for integration.  

Details on the current status of soil carbon, bulk density and pH levels are provided in this section, 
with further detail provided in Appendix A, which also presents data on soil phosphorous and 
dispersion indicators. 

6.2.1 Soil organic carbon 

The digital soil modelling indicated that: 

• Climatic factors are the main drivers of SOC, that is, the factors controlling the distribution of 
SOC over the forest areas of the RFA regions. 

• SOC increases with decreasing temperature and increasing rainfall. 

• SOC is also driven by parent material and soil type. 

• Forest disturbance demonstrates a statistically significant negative trend, indicating the 
higher the level of forest disturbance, the lower the SOC levels. 

Estimated SOC concentration maps (in %) for the 0-30 cm across the RFA regions in approximately 
2010 are presented in Figure 6. They were produced using the digital soil mapping method, based on 
over 1,700 soil profiles contained in SALIS (refer Section 6.1.2). Maps are included for mean, plus upper 
and lower 90% confidence levels. 

 

Figure 6 Estimated current surface soil organic carbon concentrations (%) across RFA regions  
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Soil organic carbon maps were also produced for the 0-10 cm and 10-30 cm layers. Values are typically 
significantly higher in the 0-10 cm layer, reflecting the usual decline in SOC with depth. Validation 
results, as provided in Appendix A, Update 4, reveal Lin’s concordance of 0.39 for the 0-30 cm depth 
interval, which indicates only a weak to moderate statistical performance. 

Analysis undertaken within the digital soil mapping process (see Appendix A, Update 5) revealed that 
climatic factors are the main drivers of SOC, ie, the factors controlling the distribution of SOC over the 
RFA regions. This soil indicator increases with decreasing temperatures and increasing rainfall. These 
factors control the production of organic matter and the extent of its mineralisation, decomposition 
and subsequent loss from the soil (Sanderman et al. 2010; Wiesmeier et al. 2019). SOC levels are 
typically highest under cool moist conditions and lowest in hot and dry conditions (Gray and Bishop 
2019). The influence of projected climate change on SOC is examined further in Section 6.3.3. 

The modelling process identified parent material and soil type, as represented by the silica index, as 
key drivers of SOC. SOC increases with decreasing silica of parent material, indicative of soils of higher 
clay content and fertility which contribute to higher vegetation growth and stabilisation of soil carbon. 
Other parent material/soil variables such as radiometric K and Th, and kaolin clay proportion, are also 
important. 

The forest disturbance index (FDI) demonstrates a statistically significant negative trend (refer 
Appendix A), indicating that the higher the level of forest disturbance, the lower the SOC levels. 
Highest SOC levels are associated with the least disturbed sites, then decreasing to forests available 
for harvesting (as per State Forest Management Zones, refer Table 8) and lowest levels associated 
with privately owned or leased, often grazed forest sites. Similarly, the positive influence of vegetation 
cover on SOC content is demonstrated.     

The variable Yrs_sinceFire, representing the length of time since the last major bushfire (not 
prescribed burn), is revealed to be a strong positive driver of SOC. Levels increase with time since the 
last major fire event. This relationship is examined more closely in Section 6.3.3. 

The modelling identified a positive correlation between topographic slope gradient and SOC in the 
RFA regions. This suggests the steeper sites have overall higher vegetation densities with less soil 
disturbance. This is supported by a negative, albeit weak, correlation between the topographic 
wetness index (TWI) and SOC. 
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6.2.2 Bulk density 

The modelling indicated that within the RFA regions: 

• Soil bulk density is most influenced by soil type and parent material. 

• Soil bulk density is higher under higher rainfall conditions and may be lower under higher 
temperatures. The relationship of bulk density with climate warrants further study. 

• Forest disturbance demonstrates a statistically significant positive trend, indicating the 
higher the level of forest disturbance, the higher the bulk density. 

• Vegetation cover demonstrates a statistically significant negative trend, indicating the lower 
the vegetation cover, the higher the bulk density. 

Modelled bulk density for the 0-30 cm depth across the RFA regions is presented in Figure 7 (from the 
Soil Landscape Grid of Australia, approx. 2010). 

 

Figure 7 Estimated current surface soil bulk density across RFA regions (mg/m3) from SLGA  

Further analysis undertaken using digital soil mapping techniques in the current project revealed that 
parent material/soil type indicators such as silica, radiometric K and clay type are dominant drivers of 
bulk density. The positive correlation with silica reflects the higher bulk density typically associated 
with sandy soils and the lower bulk density in clay rich well-structured soils. 

Rainfall is demonstrated to be another dominant driver. Its positive correlation may reflect the 
increased leaching of clays from the upper layers of the soil under higher rainfall conditions, thus 
contributing to more sandy soils with their associated higher bulk density. Temperature is also of 
moderate influence; the negative correlation possibly indicative of higher clay formation in warm 
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moist conditions, thus driving bulk density lower. The relationship of bulk density with climate in this 
forest environment warrants further study. 

Vegetation cover and forest disturbance index (FDI) are both of moderate influence on bulk density, 
with negative and positive correlations, respectively. These results reflect the rise in bulk density with 
lowering vegetation cover and increasing forest disturbance. Vegetation and organic matter serve to 
improve soil structure, and increased disturbance of soils with the higher FDI leads to soil compaction 
due to the use of forestry machinery,  vehicles and hard-hooved stock: thus both variables contribute 
to the observed trends. The association of forestry harvesting operations with increased bulk density 
was reported by Huang et al. (1996). 

The variable representing years since bushfire did not appear to have any influence on soil bulk 
density. However, some association might be feasible due to the loss of organic matter after fire, then 
its gradual recovery. 
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6.2.3 Acidity 

The modelling indicated that within the RFA regions: 

• Soil pH is most influenced by soil type and parent material. 

• Soil pH is higher (soils are more alkaline) in locations of lower rainfall and higher 
temperatures. 

• Soil pH is lower (soils are more acidic) in locations of higher vegetation cover. 

Soil pHca maps for the 0-30 cm across the RFA regions are presented in Figure 8. The maps represent 

an estimate of pHca in approximately 2010. They were produced using the digital soil mapping method 

(refer Section 6.1.2). Maps are included for mean, plus upper and lower 90% confidence levels. 

 

Figure 8 Estimated current surface soil pH across RFA regions (pH units) 

Map validation results provided in Appendix A, Update 4, reveal only a weak to moderate statistical 
performance, with Lin’s concordance of 0.35 for the 0-30 cm depth interval. 

Parent material and soil type, as represented by the silica index, were revealed as the dominant drivers 
of soil pH. pH increases, i.e., become more alkaline, with decreasing silica content of parent material, 
indicative of soils of higher clay content and fertility. Conversely, soils generally become more acidic 
with more siliceous, sandy soil (Gray et al. 2016b). Other parent material/soil variables such as 
radiometric K and Th, clay proportion and the weathering index were within the top 10 drivers of pH. 

Climatic factors are also revealed as key drivers of pH. Soils are shown to become more alkaline with 
decreasing rainfall and increasing temperatures. This results from the lower levels of leaching that 
allows basic cations to be retained in the soil and not replaced by hydrogen and aluminium ions 
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(McKenzie et al. 2004; Rubinic et al. 2015). The influence of projected climate change on pH is 
examined further in Section 6.3.3. 

The modelling reveals that pH is negatively correlated with vegetation cover over the RFA regions, i.e., 
the higher the vegetation cover, the more acidic the soil. It is likely that high vegetation cover is 
associated with release of organic acids. It can be observed that the forest disturbance index (FDI) did 
not rank in the top ten variables.  

The variable representing years since bushfire did not appear to have any influence on the soil pH. 
However, a rise in pH following forest fires due to the accumulation of basic ash is reported in the 
literature review of Raison (1979). 
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6.3 Trends and predictions 

Sophisticated modelling enables prediction of changes in soil carbon, bulk density, erosion, and pH 
levels through time, subject to stresses such as bushfire and climate change, and given a range of key 
parameters. A wider range of data and calibration is required in order to refine the results of these 
models and broaden their application (refer Section 7.2). Further detail is provided in Appendix A. 

These products are to be viewed as a first approximation and will be subject to change when more 
recent and more representative field data become available for integration. 

6.3.1 Soil carbon loss 

6.3.1.1 Findings of data cube model 

Figure 9 shows the predicted 0-30 cm SOC maps for the months of June 1990, 2000, 2010 and 2020. 
While the temporal trend is not generally apparent from these maps, the difference between the SOC 
for between decades show substantial changes in SOC (Figure 10).   

 

Figure 9 Estimated surface SOC concentrations (%) across RFA regions, 1990-2020 
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Figure 10 Estimated change in surface SOC concentrations (%) across RFA regions between four time steps, 
1990-2020 

The statistical significance of the trends is low, as indicated by the lower and upper 90% prediction 
intervals. Figure 11 presents the 0.05-, 0.5- and 0.95-quantiles of the 0-30 cm SOC for June 2020.  
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Figure 11 Estimated surface SOC concentrations (%) across RFA regions, 0.05-, 0.5- and 0.95-quantiles for 
June 2020 

 

We aggregated the SOC time series by RFA regions and by management regime (Figure 12). 
Management regimes were broadly grouped into reserved (formal and informal), forestry operations 
(harvesting), and privately owned or leased. The modelling suggests an inverse relationship between 
the degree of land disturbance and SOC concentrations, with the SOC higher in the reserved (formal 
and informal) forest and least in the privately owned or leased forest. 

This supports the findings of Turner & Lambert (2000) who found an inverse relationship between SOC 
and land disturbance (native forest compared to plantation forest). 

As shown in Figure 12, the data cube model predicts SOC concentrations to have varied through time, 
with a slight decline between 1990 and 2020 when comparing only these two points in time. For the 
period prior to 2010, where more observations (soil sample data) are available, little overall change is 
observed. In the period 2010-2020, the model indicates a possible increasing trend, followed by a 
sharp decline in recent years. Over-interpretation of these results is cautioned against as the 
predictions have high uncertainty (refer Appendix B), particularly post-2010, where there are very few 
observations upon which to train the model (refer Section 5).   

We suspect the model is quite responsive to NDVI, and that the trends shown in Figure 12 reflect this. 
Further sampling in the near future would likely lead to more reliable predictions of SOC for the period 
2010-2020, as interpolation is generally better than extrapolation in terms of predictive 
performance.  It will also likely dampen the effect of NDVI on predictions.  Overall, the data cube 
approach has shown what is possible in terms of space and time prediction of soil, but requires more 
observations to improve its performance, once again highlighting the importance of long-term 
investment in soil monitoring. 
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Figure 12 Yearly predicted surface SOC concentrations (%) spatially averaged by RFA region (top) and by 
management regime (bottom) 

  

Spatial and temporal average of predicted monthly SOC (%) in forest management regimes of the RFAs 
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6.3.1.2 Modelled impact of increasing land disturbance on SOC 

Figure 13 presents the change in SOC content from a hypothetical status of a less disturbed 
environment (FDI 1, refer Section 6.1.2) to a relatively recent current probable disturbance status 
(approx. 2010), based on the change in FDI. All other variables were held constant, for example, no 
change in climate was considered. 

 

Figure 13 Predicted absolute and relative change (%) in surface SOC concentrations from a hypothetical 
relatively undisturbed reference condition to current condition 

A significant widespread loss of SOC is revealed due to this change in degree of disturbance. SOC 
decline varies from zero to moderate (>2%) in absolute terms, or over 20% in relative terms. Larger 
declines are, as expected, associated with the areas of highest disturbance, as revealed by Table 10. 
No SOC decline occurs over relatively undisturbed lands, then moderate declines (mean -9% in relative 
terms for 0-30 cm) over partially disturbed lands, and highest declines (mean -20.38% in relative 
terms) over moderately disturbed, periodically grazed forest lands (as represented by FDI 3). The 
extent of SOC decline decreases with depth. 

Table 10 Mean relative change in SOC with forest disturbance (%) 

Forest disturbance index 0-10 cm 10-30 cm 0-30 cm 30-100 cm 

1:  Relatively undisturbed 0 0 0 0 

2:  Some disturbance -10.3 -9.9 -9.3 -5.0 

3:  Moderate disturbance (periodic grazing) -21.7 -20.9 -19.5 -10.3 
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Even greater declines are likely to have been demonstrated if a hypothetical decrease in vegetation 
cover had been incorporated into the change modelling process (see method description, Section 
6.1.2). The modelled loss of soil carbon associated with ground disturbance is consistent with likely 
lower inputs of organic material to soils and greater decomposition/mineralisation (Jandl et al. 2007). 

The rate of decline is not uniform, even within each FDI class, but is dependent on the precise 
combination of environmental factors. Areas with the highest existing SOC levels, such as in wet 
locations and fertile clay rich soils, lose more SOC than areas with low existing SOC levels, such as in 
drier locations with low fertility sandy soils. This higher loss applies in both absolute and relative terms, 
as demonstrated by Gray et al. (2016a). 

The modelled change in SOC due to human disturbance in each RFA or subregion is presented in Table 
11. It reveals the highest overall decline in the Upper North East sub-region (>11% in relative terms, 
0-30 cm). Declines are greatest in the surface soils. 

Table 11 Mean relative change in SOC from human disturbance by RFA region 

RFA Region 0-10 cm 10-30 cm 0-30 cm 30-100 cm 

Upper North East subregion -12.7 -12.3 -11.4 -6.0 

Lower North East subregion -10.3 9.9- -9.2 -4.9 

Southern  -8.8 -8.5 -7.9 -4.2 

Eden FA -7.7 -7.4 -6.9 -3.7 

 

6.3.1.3 Modelled impact of climate change on SOC 

The change in SOC stocks arising from projected climate change over NSW has been modelled as part 
of the NARCliM program (Gray and Bishop 2018, 2019). The study used a far change period, centred 
around 2070. Results from that study suggest a marked decline in relative terms over the RFA regions 
to the far change period. These results, isolated to the RFA regions, are presented in Figure 14.  

The relative change by RFA region or subregion is presented in Table 12. A mean relative loss of 17% 
for the 0-30 cm interval is projected over both North east subregions, rising to over 37% relative loss 
in the Southern region. The results represent the mean of 12 climate model projections under the 
IPCC intermediate A2 emission scenario applied in the NARCliM program (Evans et al. 2014). The 
magnitude of decline in SOC varied between the different climate models. 

The results suggest a continuing loss of SOC and associated soil condition across all systems of land 
management over the NSW eastern forests. The greatest predicted losses in SOC were identified to 
occur in areas with currently high SOC stocks. Highland regions, particularly in the southern alps, are 
predicted to lose the largest quantity of SOC. 

The findings suggests that forest managers will have to implement appropriate soil carbon-enhancing 
strategies even to just maintain current SOC levels. This also has implications for identifying ongoing 
net carbon emissions from NSW lands, with respect to aiming for Net Zero Emissions (NSW 
Government 2016; DPIE 2020) and mitigating climate change.  
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Figure 14 Predicted relative change (%) in surface SOC concentrations with projected climate change to 
approx. 2070 

Table 12 Mean relative change in SOC with climate change to approx. 2070 by RFA region (%) 

RFA Region 0-30 cm 30-100 cm 

Upper North East subregion -17.2 -37.6 

Lower North East subregion -17.0 -36.3 

Southern  -37.2 -64.0 

Eden  -31.1 -55.2 

 

6.3.1.4 Modelled impact of bushfire on SOC 

The impact of bushfire was assessed by incorporating a variable into the model which represents the 
number of years since bushfire (wildfire). There is insufficient soil sampling from burnt areas following 
the 2019/20 fires to incorporate into the modelling (refer Section 5). 

Modelling revealed a strong positive correlation between SOC and the number of years since bushfire. 
The influence of this variable was strongest when converted to the natural log format (ln) indicating 
its influence is more pronounced in early rather than later years. This reflects high rates of SOC 
recovery in early years then progressively lower rates of SOC recovery until a new equilibrium is 
reached. The modelling suggests a re-equilibrium is reached 75 years after bushfire. The estimated 
recovery period does not account for additional bushfires during this time. 
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In the analysis of trends with bushfire, the model was run with the variable representing the number 
of years since bushfire (wildfire) set to the immediate aftermath of bushfire hypothetically applied 
across the entire RFA study region (Figure 15). Relative losses of SOC generally range between 40 and 
60%, substantially high proportions. The highest rates of loss (in absolute terms) are indicated over 
locations with high initial SOC levels.  

The recovery of SOC after 20 years is presented in Figure 16, suggesting that 62% of carbon originally 
lost is regained over that time period. This does not account for additional bushfires (wildfires) 
occurring during that period.  

The loss of SOC following bushfire indicated by the modelling is consistent with the findings of other 
studies. A study of soil conditions 3 years after high intensity fires in Warrumbungles National Park 
reported relative SOC losses of 35% in sandy soils and 55% in moderately clay-rich soils, followed by a 
period of recovery (Tulau and McInnes-Clarke 2016). Similar trends have been demonstrated in other 
Australian and international studies (Bowd et al. 2019; Homann et al. 2011; Tessler et al. 2008; Tulau 
and McInnes-Clarke 2016), as graphically represented in Figure 17. 

Soil data from areas affected by the 2019/20 bushfires represent a critical data gap which future 
monitoring efforts should seek to address (refer Section 8). 

 

 

Figure 15 Predicted relative change (%) in surface SOC concentrations immediately following bushfire across 
RFA regions 
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Figure 16 Predicted absolute and relative increase (%) in surface SOC concentrations with 20 years since 
bushfire across RFA regions 

 

 

Figure 17 Predicted temporal changes in soil organic matter content following low and high fire severity 
(after Tessler et al. 2008 in Tulau and McInnes Clarke 2016) 

6.3.2  Modelled changes in bulk density 

Figure 18 presents the change in bulk density (0-10 cm) from a status of hypothetical relatively 
undisturbed environment to current probable disturbance status (approx. 2010), based on changes in 
FDI. All other variables were held constant, that is, no change in climate. 
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A slight increase in bulk density, particularly over the 0-10 cm interval, is revealed with this 
hypothetical change in disturbance. The increases range to over 0.2 t/ m3 or 15% in relative terms 
Larger increases are, as expected, associated with the areas of higher disturbance, as revealed by 
Table 13. There is zero change modelled over current minimally disturbed lands, then slight increases 
(mean 7% in relative terms for 0-10 cm) over partially disturbed lands and highest increases (mean 
14% in relative terms for 0-10 cm) over moderately disturbed, often grazed forest lands. 

Table 13 Mean relative change in bulk density with forest disturbance (%) 

Forest disturbance index 0-10 cm 10-30 cm 0-30 cm 

1:  Relatively undisturbed 0 0 0 

2:  Partial disturbance 6.8 6.1 8.1 

3:  Moderate disturbance (periodic grazing) 14.2 13.6 15.3 

These changes reflect the potential impacts of soil compaction from heavy forestry machinery, 
vehicles and stock, plus potential decreases in vegetation and SOC associated with the change from 
the relatively undisturbed condition to the current, more disturbed forest environment. Huang et al. 
(1996) similarly report an  increase in soil compaction and bulk density with ground disturbance arising 
from timber harvesting and associated activities. 

 

Figure 18 Predicted absolute and relative change (%) in surface soil bulk density from a hypothetical 
relatively undisturbed reference condition to current condition  

 

The modelled change in bulk density (0-10 cm) for each RFA region is presented in Table 14. It reveals 
the highest overall increases in the North East subregions.  
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Table 14 Mean relative change in bulk density from hypothetical relatively undisturbed to current conditions 
by RFA region (%) 

RFA region 0-10 cm 10-30 cm 0-30 cm 

Upper North East subregion 8.3 7.6 9.7 

Lower North East subregion 6.7 5.9 8.0 

Southern 5.0 4.8 5.7 

Eden 5.7 5.3 6.5 

 

6.3.3 Modelled changes in acidity 

The change in pH arising from projected climate change over NSW has been modelled as part of the 
NARCliM program (Gray and Bishop 2018, 2019). The study used a far change period, centred around 
2070. Results from that study suggest a slight increase to more alkaline soils over the RFA regions to 
the far change period. These results are presented in Figure 19. 

The change by RFA region is presented in Table 15. The most pronounced increases are evident in the 
Southern region, particularly in the alpine regions, where increases of more than 0.3 pH units are 
predicted. The results represent the mean of the 12 climate model projections under the IPCC 
intermediate A2 emission scenario applied in the NARCliM program (Evans et al. 2014). The magnitude 
of change in pH varied between the different climate models. 

Over most of the region the changes in pH are relatively minimal in absolute terms. However, any 
changes in soil pH may affect natural ecosystems, which have established under particular pH ranges. 
Where significant increases or decreases (e.g. of 0.2 pH units or more) are predicted there is a 
likelihood that native ecosystems will be adversely affected; this is an issue that may need to be 
considered and addressed by managers of these ecosystems (Steffen et al. 2009; Prober and Wiehl 
2012). 

https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW
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Figure 19 Predicted change in pHca due to projected climate change to approx. 2070 

 

Table 15 Mean absolute change in pH with climate change to approx. 2070 by RFA region (pH units) 

RFA Region 0-30 cm 30-100 cm 

Upper North East subregion 0.16 0.13 

Lower North East subregion 0.16 0.13 

Southern  0.27 0.26 

Eden  0.23 0.22 
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6.3.4 Hillslope erosion 

Hillslope erosion, including sheet and rill erosion, is the dominant form of soil loss in NSW (refer Table 
3). There are a range of models for estimation of soil loss rates from landscapes. The Revised Universal 
Soil Loss Equation (RUSLE) is amongst the most widely applied. 

The RUSLE has been used to estimate the hillslope erosion rates on monthly and annual basis for the 
period of 2001 to 2020 and to analyse the state and trends of erosion across NSW (Yang et al. 2020).   
As RUSLE was originally developed for agricultural soils, the cover and management, or C factor, is the 
major limiting factor for its application in a forest environment. We developed a method (Yang 2014; 
Yang 2020) on the C factor estimation based on the monthly fractional vegetation cover including 
photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS). This is the 
best available method of remotely assessing cover for erosion predictions and is well suited to 
environments where climate is highly variable and non-green vegetation is a significant component of 
the overall cover (McKenzie et al. 2017). 

This remote sensing based method has advantages to consistently and continuously estimate hillslope 
erosion over large areas, but is not sufficient to evaluate localised impacts of sediment and runoff 
delivery as they relate to timber harvesting activities. Future monitoring efforts should assess the 
interaction of the timber harvesting and forest road and track network with both sediment and runoff 
delivery. 

Figure 20 presents the modelled average hillslope erosion rates (t ha-1 yr-1) for the RFA regions across 
NSW for the period 2001-2020. The modelled hillslope erosion rates vary among the RFA regions, 
where the North East RFA has the highest hillslope erosion rate (lower subregion, 5.4 t ha-1 yr-1, 
followed by the upper subregion, 4.0 t ha-1 yr-1), then the Southern RFA (2.1 t ha-1 yr-1) and the Eden 
RFA (1.7 t ha-1 yr-1).  

Hillslope erosion has great seasonal and inter-annual variation. Figure 21 shows the predicted annual 
hillslope erosion (t ha-1 yr-1) in the NSW RFA regions for the period 2001-2020. Over this 20-year period, 
the modelled maximum annual erosion rate was 8.4 t ha-1 yr-1 in 2013 in the lower North East RFA 
subregion, which was about 15 times higher than the lowest rate (0.6 t ha-1 yr-1) in 2009 in the Eden 
RFA region. Overall, the hillslope erosion rate in the RFA regions is the highest in summer, especially 
in February (0.8 t ha-1 month-1), which is more than 10 times higher than the winter rate (e.g. July < 
0.1 t ha-1 month-1), as shown on Figure 22. 
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Figure 20 Modelled mean hillslope erosion (t ha-1 yr-1) across RFA regions, 2001-2020 

 

 

 

Figure 21 Annual modelled hillslope erosion (t ha-1 yr-1) by RFA region, 2001-2020 
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Figure 22 Modelled mean hillslope erosion rate across RFA regions by month, during the period 2001-2020 

To evaluate how changes in vegetation impact erosion rates across the RFA regions, we used the 
estimated erosion rate at the 100th percentile vegetation cover for the period 2001-2020 as the 
baseline condition and compared it to the estimated erosion rates at the current condition as 
presented above. The comparison shows that the Southern RFA region has the highest increase in 
erosion rates (40%), being the most affected by the drop in vegetation cover, while the increase ranges 
from about 27-29% in North East and Eden RFA regions. 

We also modelled the worst scenario assuming the vegetation cover is totally removed. The erosion 
rate in Lower North East RFA subregion was estimated to be 398 t ha-1 yr-1; 313 t ha-1 yr-1 in the Upper 
North East RFA subregion; 129 t ha-1 yr-1 in Southern RFA region; and 119 t ha-1 yr-1 in Eden RFA region. 
When we compare these values to the modelled current conditions (Figure 20), we find that erosion 
rates could increase 60-80 times across NSW RFA regions if the current vegetation cover was totally 
removed, while other conditions (slopes, slope-length, soil and climate) remain unchanged (Figure 
23). This finding emphasises the importance of maintaining adequate vegetation cover to reduce soil 
loss in the RFA regions, especially on steep lands. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E
ro

s
io

n
 (

t/
h
a
/m

o
n
th

)

Month



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

48 

 

Figure 23 Estimated impact of decrease in vegetation cover from a hypothetical 100th percentile vegetation 
cover to modelled current vegetation cover on erosion rate (%) 
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7 Discussion 

7.1 Findings 

7.1.1 Critical data gaps 

Our data-gap analysis determined that the available data of soil health indicators are limited and 
subject to large spatiotemporal variation.  

Critical data gaps exist, as follows: 

• The status of biological soil health indicators (microbial biomass, fungal : bacterial ratio, 
mycorrhizal fungal assemblages) to assess below ground biodiversity and ecosystem 
resilience. 

• The current status of physical soil health indicators (particularly bulk density and aggregate 
stability) to assess the physical condition of the soil and enable accurate calculation of 
carbon stocks. 

• The current status of chemical soil health indicators within the RFA forest regions, including: 

o Current total SOC and carbon fraction concentrations to map, monitor and forecast 
soil carbon dynamics. 

o Current phosphorus and nitrogen distributions to evaluate nutrient distribution. 

o Current soil acidity. 

o Current soil salinity. 

• The status of soil health indicators following the 2019/20 bushfires. 

• Measured change in soil health indicators through time from revisited monitoring sites. 

• Measured differences in soil health indicators between paired sites under different types of 
forest management. 

The available data are insufficient to consider all indicators in a combined holistic manner to gain a 
broad assessment of the condition of NSW forest soils. A meaningful assessment of changes and 
trends in soil condition requires an ongoing monitoring program (refer Section 8).   

Estimates of SOC stocks and distribution remain limited by insufficient data for NSW forests, and 
indeed for many regions globally (Jackson et al. 2017). Forest monitoring provides an opportunity for 
NSW to lead future national and international efforts in soil carbon accounting. 

7.1.2 Summary of driving factors 

As discussed in Section 4, the status of soil indicators is the product of multiple factors and sub-factors. 
The DSM techniques provide a useful approach for identifying key drivers of the component soil 
condition indicators. The combination of these broad factors is shown to vary for each indicator, as 
follows: 

• Soil organic carbon: 

o SOC is driven mostly by climatic factors, that is, these factors control the distribution 
of SOC over the RFA regions, where SOC increases with decreasing temperature and 
increasing rainfall.  

o SOC is also driven by parent material and soil type. 
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o Forest disturbance from human activities demonstrates a statistically significant 
negative trend, indicating the higher the level of forest disturbance, the lower the 
SOC levels. 

o The number of years since bushfire was also a significant driver of SOC levels. 

• Acidity: 

o Soil pH is most influenced by soil type and parent material. 

o Soil pH is higher (soils are more alkaline) in locations of lower rainfall and higher 
temperatures. 

o Soil pH is lower (soils are more acidic) in locations of higher vegetation cover. 

• Bulk density: 

o Bulk density is most influenced by soil type and parent material. 

o Bulk density is higher under higher rainfall conditions and may be lower under 
higher temperatures.  

o Forest disturbance from human activities demonstrates a statistically significant 
positive trend, indicating the higher the level of forest disturbance, the higher the 
bulk density. 

o Vegetation cover demonstrates a statistically significant negative trend, indicating 
the lower the vegetation cover, the higher the bulk density. 

Climate and parent material/soil type were revealed to be strong drivers for all indicators. Topographic 
factors were not revealed as strong drivers at the broad regional scale, but are likely to be more 
influential at a local scale. These environmental variables are broadly beyond the control of human 
influence. The relationship of bulk density with climate warrants further study. 

Forest management and the associated vegetation cover factors are important drivers for most soil 
condition indicators. This finding aligns with previous work evaluating the effects of forest 
management on soil health (Turner and Lambert 2000).  

7.1.3 Summary of trends 

Though model performance was low due to limited data, the digital soil mapping and data cube 
modelling indicate potential declines in SOC across the RFA regions in recent years, regardless of land 
use. 

The modelling revealed the following trends based on different potential soil disturbances: 

• Increased forest disturbance (as represented by the FDI) results in decreasing SOC and 
increasing bulk density, suggesting poorer soil structure and condition. These changes are 
typical for any human operation that removes carbon-based products and sees a reduction in 
vegetation cover, such as timber harvesting and stock grazing. The modelling revealed that 
areas of moderate disturbance (e.g. subject to periodic stock grazing) had greater impact on 
forest SOC, bulk density and associated soil condition than less disturbed areas. 

• Climate change was shown to contribute to a decline in SOC over most of the region. The 
projected decline in SOC suggests an associated decline in soil condition suggests that forest 
managers will have to implement appropriate soil carbon-enhancing strategies to maintain 
current SOC levels. This also has implications for identifying ongoing net carbon emissions 
from NSW lands, with respect to aiming for Net Zero Emissions (NSW Government 2016; DPIE 
2020) and mitigating climate change. 

• Climate change was also shown to contribute to a slight rise in pH over most of the region. 
Any significant change in soil pH, either rise or fall, can be detrimental to natural ecosystems 
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that are adapted to particular pH ranges. A resulting degree of migration of ecosystems may 
be an eventual consequence of these changes (Steffen et al. 2009).   

• Bushfires are demonstrated to have a major influence on SOC, with a dramatic loss predicted 
immediately following the bushfire, in the order of 50% (relative loss). This is followed by a 
gradual recovery of SOC in the following years, with over 60% recovery after 20 years and 
approaching re-equilibrium levels after approximately 75 years. Based on this scenario, SOC 
may be subject to continuous decline with more frequent fires. Further analysis is required to 
evaluate this trend. The influences of prescribed and cultural burning on SOC were not 
assessed in this study, but should be examined in ongoing monitoring programs. 

The erosion modelling identified that forests are subject to potential erosion risk, especially in 
summer. This is likely attributed to steeper terrain; high rainfall quantity and intensity and frequent 
bushfires in forest lands. Hillslope erosion was identified to be greatly impacted by seasonal and inter-
annual variation. 

7.2 Limitations 

All experimental science and modelling processes are associated with errors due to a range of 
uncertainties existing in the real world (Refsgaard et al. 2007). The ability to spatially capture the main 
environmental variables that are affecting pedogenesis to a sufficiently fine grain so that they can 
relate to field measurement is a major challenge facing spatial soil modellers (Ryan et al. 2000) 

Limitations in the modelling process need to be recognised and the results interpreted with caution.  
The baseline maps and estimates of change as shown in the maps of Section 6 are suitable at a regional 
and planning scale but are not applicable at local scale or individual sites. DSM techniques allow us to 
establish key relationships and trends, which may not be readily apparent when examining single 
isolated sites.  

In addition to the relatively scarce data (refer Section 5), the digital soil mapping and modelling 
products are subject to various inherent uncertainties, as has been reported by Nelson et al. (2011), 
Bishop et al. (2015) and Robinson et al. (2015). In the context of soil modelling and simulation, there 
exist uncertainties related to a lack of information, followed by statistical variability in prediction, 
which is addressed by estimates of uncertainties and model assessment statistics (Robinson et al. 
2015). 

The validation results of the models upon which the baseline digital soil maps, driving factors and 
trends were based were not typically strong (refer Appendix A), with Lin’s concordance values 
generally in the range of 0.3 to 0.4, where a value of 1.0 denotes perfect accuracy.  

Sources of uncertainty in the spatial modelling of forest soils were identified as follows: 

• The general uniformity of environmental conditions in the forested area of eastern NSW, such 
as the typical moderate to high rainfall, low fertility soils, high vegetation cover and moderate 
to steep terrain, means there is a lack of contrast in conditions that normally contribute to 
models of greater strength, such as large variation in soil fertility, terrain, land use and 
vegetation cover. 

• There is incomplete coverage of all required areas of key environmental space, ie, 
combinations of different environmental conditions, over the forest study area. 

• A key variable is the lithology (silica) layer, which typically was one of the most powerful 
controlling variables. Although lithology for site data is generally reliable, the broader grid 
used to create the final maps is less reliable as it relies on coarse scale geological mapping. 
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• The vegetation layer used does not distinguish between different forms of vegetation cover, 
ie, ground cover or canopy cover, which can contribute to imprecise soil-vegetation 
relationships. 

• The FDI presented and applied in this study is a coarse indicator that does not reflect subtle 
differences and is insufficient to fully model the impacts of land management, such as those 
resulting from intensive versus periodic selective harvesting, the date of harvesting operation, 
or differing intensity of grazing by livestock. The future application of available datasets on 
forest harvesting history, as applied in the Carbon Balance project of the FMIP, may partially 
address some limitations of the FDI variable.  

• Similarly, the variable representing the number of years since bushfire is of a coarse scale and 
would not reliably represent variations in intensity of the fire throughout the burnt areas. 

• The remote sensing-based method used to estimate hillslope erosion risks enables consistent 
estimates of hillslope erosion over large areas but is not sufficient to evaluate localised 
impacts of sediment and runoff delivery as they relate to timber harvesting activities. Future 
monitoring efforts should assess the interaction of the timber harvesting and forest road and 
track network with both sediment and runoff delivery. 

• Variation in the dates of sampling of profiles within the SALIS dataset means the temporal 
variation in climatic conditions within a single region will contribute to differing influences on 
soil properties, even where they were spatially close.   

• The analysis of many trends reported here relied on the space-for-time substitution modelling 
approach. This assumes patterns of variations in space can substitute for patterns of variations 
in time, which may not always be valid. 

• Errors in soil data can also be introduced through field sampling and laboratory 
inconsistencies. For example, the MIR analysis of soil carbon fractions is subject to significant 
uncertainty. 

 

Many limitations would be addressed by the proposed monitoring program (refer Section 8). This will 
allow reliable analysis of trends from both digital modelling and conventional empirical analysis. 
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8 Conceptual monitoring design 

8.1 Overview 

Based on  the conceptual framework for the evaluation of soil health and stability (refer Section 1.3), 
we have provided a conceptual outline of monitoring program requirements and presented three 
program options, each of which would provide a core dataset to determine soil functional thresholds 
(e.g. appropriate pH ranges for a location) and identify locations of soil change. 

8.1.1 Rationale for a Forest Soil Monitoring Program 

As discussed in Section 5.4 and highlighted by the digital soil modelling efforts, there is a significant 
lack of baseline soil health indicator data upon which estimations and predictions can be made. Critical 
data gaps exist which must be addressed to: 

• Generate baseline data for soil health and stability indicators across NSW forests; 

• Generate soil carbon data to inform carbon accounting and climate change mitigation efforts;  

• Generate values for soil indicators, from which region-specific metrics and thresholds can be 
derived;  

• Determine the relationship between soil health and stability and land management practices 
to inform future land management decisions; and  

• Provide important insight for strategic direction of soil resource management and future 
scenario planning.  

The value of soil data lies in their reliability and currency. Ongoing monitoring is essential to identify 
trends in forest soil condition and to estimate soil carbon stocks. A monitoring program would 
separate relatively small temporal change from often-larger spatial variation and would involve 
periodic return to selected forest soil monitoring sites, with collection of key field and laboratory data.  

Soils, particularly topsoils, are a living entity. Previous monitoring programs have not included 
biological indicators due to historic inadequacies in these types of measurements. Modern soil science 
relies on biological indicators. The forest monitoring program provides an opportunity to obtain much 
needed biological and soil biodiversity data. 

8.1.2 Linkages with previous work and other monitoring programs 

Future monitoring efforts would build upon the work of the NSW state soil monitoring program (MER). 
We will evaluate the 41 MER monitoring sites which fall within the RFA regions should be evaluated 
for integration where possible. This will add valuable information to the existing dataset. 

Opportunities for linkages with other FMIP initiatives will be explored, with an emphasis on 
collaboration and data-sharing. 

In preparing this conceptual monitoring design, the relevant experiences of DPIE from other current 
and developing monitoring programs were integrated. There are similarities in approach, particularly 
with collection methods of soil samples, analysis, data collection and soil variables measured.  

8.2 Survey design 

It is not feasible to monitor every soil type nor every soil landscape that falls within the RFA regions. 
Monitoring is therefore to be distributed based on broader ecological regions, which are based on 
soil-forming factors: geology, topography, climate, soils and vegetation (Mitchell 2002). Such regions, 
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known as Mitchell Landscapes, provide a method of amalgamating several soil landscape map units 
to guide spatial coverage. 

Mitchell Landscapes can be further broadened into meso-ecosystems, which contain between 1 and 
7 Mitchell Landscapes, depending on the complexity/variability of important lithologies and terrain.  

Figure 24 shows the Mitchell Landscapes and Meso-ecosystems which exist within the RFA regions. 

  

Figure 24 Mitchell landscapes within RFA regions (left); meso-ecosystems (Mitchell landscape groups) within 
RFA regions (right) 

Monitoring sites will be distributed such that data are collected to represent the dominant Mitchell 
landscape of each meso-ecosystems (refer Section 8.7). 

8.3 Monitoring frequency 

Monitoring sites are to be established in a staged approach over 5 years and revisiting of sites 
thereafter on the same rotation. A staged approach offers benefits including (Grealish et al. 2011): 

• As data becomes available each year the program can be adapted and improved;  

• Provides measurements for each year;  

• Smooths out the flow of funds required;  

• Maintains continuity and visibility of the program 

The program requires 5 years to establish, with a recommended 15 years of monitoring (total of 20 
years). Based on soil resampling studies that have detected changes with measurements commonly 
used in forest soils, a resampling interval of 5 years is the maximum recommended (Lawrence et al. 
2016), particularly for soil organic carbon and its component fractions which have been found to 
change significantly in as few as 3 years (Wilson et al. 2017). 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

55 

The detailed collection required for the first round of sampling will be reduced in future years, once 
the soil has been classified and the spatial variation of soil properties across the site is determined. 

8.4 Recommended indicators 

We will monitor the following suite of indicators at every site: 

• Bulk density 

• Total soil organic carbon 

• Carbon fractions 

• pH 

• EC 

• Particle size analysis (first sampling event only). 

Additional indicators will be selected from the following: 

• Microbial biomass  

• Topsoil depth 

• Aggregate stability 

• Fungal : bacterial ratio 

• Mycorrhizal fungi 

• Mineral N (NO3+NH3) 

• Phosphorus 

• DNA extraction (subsamples of extracted metagenomic DNA should be stored permanently 
for future re-analysis at the Yanco Soil Health and Archive Laboratory) 

8.5 Monitoring methodology 

8.5.1 Site establishment 

Permanent monitoring sites will be established that can be accurately relocated to allow repeat 
sampling. Repeat measurements will be conducted at the same sites over time to enable analysis of 
the difference at individual sites and infer trends for selected significant landscapes across NSW 
forests. 

A sample area of 25 × 25 m is suitable to provide an estimate of soil properties at each site (Grealish 
et al. 2011; Wilson et al. 2007).  

On initial site establishment, a soil profile will be obtained to allow for soil classification and an 
understanding of below ground conditions. 

8.5.2 Site assessment 

Site assessment will include: profile description, including soil colour, texture and field tests (first 
sampling event only); GPS location; and ground cover estimate. 

8.5.3 Sample collection 

A sampling intensity of 10 surface samples across the site area (25m x 25m) is proposed, which will be 
combined to form one composite sample for laboratory analysis. 
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On initial site establishment, soil samples will be collected from 3-4 of the major soil horizons 
identified in the profile. Following data interpretation of the initial sample results (refer Section 8.6), 
it is likely that repeat assessments will only need to measure soil surface samples. 

8.5.4 Quality assurance 

It is essential that all records, observations and samples are taken correctly and consistently following 
defined program protocols, and that the data are entered into corporate databases for long-term safe 
keeping. As relatively small changes in soil condition can signify broader environmental trends, it is 
important that as many sources of error as practicable are eliminated. Sampling error jeopardises the 
future ability to detect what might be small changes in soil condition.  

8.5.5 Soil sample archive 

The Yanco laboratory run by DPIE has the capability for long-term archiving of physical, chemical and 
biological soil samples should further analysis be required. 

Soil samples and extracted soil DNA would be stored in an appropriate temperature-controlled archive 
for future examination. 

8.5.6 Data storage and management 

It is vitally important that data are stored securely. Soil descriptions from each sample site should be 
stored securely on the NSW Government’s Soil and Land Information System (SALIS) to current data 
management standards. The information can then be reported to other systems such as the National 
Soil Information Framework (NSIF). 

8.6 Data analysis and interpretation 

New soil data should be analysed as per the methods used to estimate baselines and trends. It is 
recommended that the data cube model be used to incorporate a range of covariates consistent with 
the spatial location of data collection and the date of sampling.  

The model outputs would be used to assess what may be causing an indicator to increase or decrease 
for a particular location, which can then be used to assess key drivers of soil health and stability across 
jurisdictions as well as for localised regions. 

Each of the proposed indicators will have a different response to environmental and forest 
management factors and monitoring will reveal differing trends. Each may show desirable or 
undesirable change, relative to the identified reference state. 

The feasibility of combining these indicators into a holistic index for reliable and quantitative 
assessment of soil health will be explored by DPIE. Previously reported options were presented in the 
literature review report of Milford (2021) and include the approach adopted during the 2008 MER 
Program (Chapman et al. 2011; OEH 2014).  

Future monitoring efforts should incorporate flexibility, such that sampling may be focused on data 
collection of indicators with the most significant input values.  

DPIE would consider the use of statistical analysis to support a scoring approach to quantify the status 
of soil health indicators. Statistical methods, such as those proposed by Rinot et al. (2018), can identify 
correlations between indicators and cluster indicators into groups based on function. The use of 
autocorrelation and principal component analyses allows practitioners to identify the most significant 
attributes and the relative contribution of each to soil health. 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

 

57 

This method can be used to refine sampling strategies by identifying the most significant input values 
and limiting further monitoring efforts to those parameters, as well as to score sites based on relative 
performance. 

8.7 Options for forest soil monitoring 

Considering the meso-ecosystems, Mitchells landscapes, and soil landscapes which make up the forest 
region, the following monitoring program options are proposed: 

Table 16 Options for forest soil monitoring 

Program Description Strategy Total 

A The most basic option which 
meets the minimum 
requirements to provide 
baseline soil conditions 
across NSW forests.  

 

Monitoring the 2 most 
dominant/highest priority 
Mitchell Landscapes from 
each meso-ecosystem.  

1 less disturbed control site + 
1 test site within each of 
these 2 landscapes. 

Nested approach in indicator 
selection to achieve 
minimum core values. 

Approx. 300 sites 

B The middle option which 
would determine baseline 
soil conditions across NSW 
forests and provide greater 
precision in determining 
trends and improved model 
reliability. 

Monitoring the 2 most 
dominant/highest priority 
Mitchell Landscapes from 
each meso-ecosystem.  

1 less disturbed control site + 
2 test sites within each of 
these 2 landscapes. 

Nested approach in indicator 
selection to achieve 
minimum core values and 
provide greater monitoring 
precision. 

Approx. 450 sites 

C The recommended 
monitoring option which 
would determine the effect 
of land management on soil 
status and comprehensively 
evaluate areas of changing 
conditions to further 
determine how or why. 

Monitoring of all Mitchell 
Landscapes.  

1 less disturbed control site + 
2 test sites per landscape 
unit. 

Representation of different 
land management practices 
and/or important local soil 
variation. 

Full indicator selection. 

Approx. 750 sites 

Program option A will use a nested approach in which most sites receive the minimum suite of analysis 
required to provide a minimum core dataset, while others receive comprehensive analysis of all 
recommended indicators. 

Program option B will use a nested approach in which most sites receive comprehensive analysis of all 
recommended indicators, while others receive the minimum suite of analysis required. 

Program option C will incorporate all recommended indicators for robust and comprehensive analysis 
and monitoring. 
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The design incorporates this flexibility for efficient resource allocation and cost-savings. Resources will 
be allocated such that areas of higher interest receive more comprehensive evaluation, such as 
locations at higher risk of soil degradation or an area using a specific land management practice of 
interest. 

8.8 Indicative cost estimates 

A nested approach is proposed whereby some sites receive comprehensive laboratory analysis and 
others receive a minimum sample suite. The ratio of each may be scaled based on the program option 
(refer Section 8.7). 

Soil analysis costs per site range from approximately $130 for the minimum sample suite and up to 
$500 to include all recommended indicators including biological testing. The price depends on the 
suite of tests chosen.  

The initial sampling round incurs an additional $70 for particle size analysis, which is required for initial 
sampling only. These prices are exclusive of labour costs. 

Approximately 1.5 days full time equivalent staff is estimated per site. Assumptions for this calculation 
include: two-person teams would be required for most locations to align with Work Health and Safety 
protocols; approximately 8 sites could be sampled per week. 
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9 Conclusion 

This report has been prepared to assess the baselines, drivers and trends of soil health and stability 
was. This was achieved through the following: 

• The design of a conceptual framework for the evaluation of soil health and stability. 

• The development of set of soil indicators (parameters) for measurement and monitoring of 

soil health and stability. 

• The evaluation of existing soil data from NSW forests in relation to presence, age, geographical 

coverage, parameters measured, repetition, and accuracy. 

• A data-gap analysis to identify data required to establish baseline values for soil indicators. 

• Estimation of the current status of soil indicators for which there are sufficient data for 

analysis. 

• Identification of potential drivers of change and threats to soil health. 

• Determination of trends for soil health and stability (including by spatial analysis). 

• The design of a soil monitoring program to address data gaps, inform soil and land 

management and maintain or improve the condition of forest soils. 

The assessment of data availability within the RFA regions identified critical data gaps. Of the data 
held in the NSW SALIS, there are no measurements of soil biological health indicators from the area. 
In the last decade, less than 50 soil carbon measurements have been collected from across the RFA 
regions. No bulk density measurements have been collected during this time, which are needed for 
accurate calculation of belowground carbon stocks. Available measurements of other physical and 
chemical soil health indicators are similarly limited. Data from the last decade to accurately evaluate 
the impact of forest management or the effects of recent events, such as the 2019/20 bushfires, are 
lacking. 

We developed methods of spatial analysis to evaluate soil health indicators, including digital soil 
mapping and a novel approach to soil modelling, the data cube, which uses geospatial technology and 
machine-learning. These approaches allowed us to establish key relationships and trends. 

Based on the available data, we evaluated the status of soil health indicators. Despite model 
performance being limited by the lack of current soil data, the digital soil modelling indicates: 

• SOC concentrations have declined slightly between 1990 and 2020, including periods of 
significant fluctuation likely related to variation in climatic conditions.  

• Areas subject to increased ground disturbance from land use activity, in particular forests in 
which grazing is permitted, have lower concentrations of SOC and higher bulk density 
(suggesting poorer soil structure and condition) than less disturbed areas. 

• Climate change is predicted to contribute to a decline in SOC over most of the region, 
suggesting that management intervention may be required to maintain current SOC levels. 

• Climate change is predicted to contribute to a slight rise in pH over most of the region. 

• Bushfires have a major influence on SOC with a dramatic loss immediately following the 
bushfire, followed by a gradual recovery of SOC in the following years. Based on our findings, 
SOC may be subject to continuous decline with more frequent fires. Further analysis is 
required to evaluate this trend. 

• The hillslope erosion risk in the RFA regions is highest in summer. A loss of vegetation cover 
increases the risk of hillslope erosion. 

We have designed a conceptual soil monitoring program which would address this urgent need. We 
propose a program of time-series monitoring that incorporates flexibility such that sampling is focused 
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on areas of concern, and statistical analysis to identify and prioritise indicators with the most 
significant input values. The program would leverage existing soil data and soil monitoring expertise 
and would deliver a core dataset from which soil functional thresholds and locations of soil change 
could be determined. 

The data produced by such a program would deliver important insight for strategic direction of 
resource management and future scenario planning, delivering tangible results to support 
management of forest soils and maintain or improve the condition of this valuable and threatened 
resource.  
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1 Introduction and overview 
The health of soils within forest systems indicates and underpins the overall health, integrity, 

productivity and ecology of the forest ecosystem and its associated clean water and sustainable 

timber resources. Key to maintaining the health of forest soils is a knowledge and understanding of 

their baseline condition. Such baseline data allow us to better understand potential trajectories in 

soil health under various land management and climate change scenarios, and to understand the 

implications of these and other disturbances. 

This interim report presents products which represent baseline conditions of key indicators of soil 

health across the RFA regions. Preliminary maps as GIS spatial files and jpeg images are introduced, 

together with associated data and statistical summaries. 

Products from two complementary approaches are presented; (i) an empirical analysis of available 

DPIE soil data grouped by soil landscape characteristics and (ii) a digital soil modelling and mapping 

approach. These two approaches present results at differing scales. They are broadly consistent with 

each other, with minor differences attributed to the differing scales and related time periods 

applied.   

Soil condition is broadly defined here as the extent of decline in key indicators relative to a relatively 

undisturbed reference state, similar to the approach taken during the 2008-09 NSW Monitoring 

Evaluation and Reporting (MER) program (Chapman et al. 2011, OEH 2014). The more a soil indicator 

has declined relative to the reference condition, the poorer is its condition. It does not represent an 

absolute quality for forest productivity. Thus, a soil may be unchanged and in very good condition 

relative to its reference state, but have poor potential for productive timber growth for commercial 

harvesting purposes.  

The baseline condition maps presented here are intended to represent a baseline condition of 

several key indicators, from which further decline will be measured, and to provide visual 

representation of data availability to inform future sampling strategies. The products are based on 

existing soil data that vary widely in date of collection. Nevertheless, the products are considered to 

be representative of the period leading up to approximately 2010.  

For specific soil profile point data, the original date of sampling is known and these serve as reliable 

baseline data for these point locations. The suite of MER data points, which was collected according 

to rigorous sampling protocols (OEH 2009, Chapman et al. 2011), forms a particularly valuable 

baseline dataset for ongoing point-based monitoring. 

Key indicators for change in soil condition presented here are:    

• total soil organic carbon (SOC) and carbon fractions (%) (particulate organic carbon/humus 

and resistant organic carbon - charcoal) (% and tonnes/ha) 

• pH (1:5 soil to water and CaCl2) 

• Phosphorous  (mg/kg) 

• Bulk density (Mg/m3)  

• Aggregate stability (Emerson Aggregate Test) 

• Erosion rate (sheet and gully) (tonnes/ha/yr) 

 

Other indicators that are also under consideration are: 

• EC (1:5 soil to water) 
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• Mineral N (NO3 + NH3), (mg/kg) 

• Topsoil depth (cm) 

• Soil biological community diversity (PLFA/ amplicon and metagenomic sequencing of 

bacterial (16S) and fungal (ITS) DNA 

 

This report presents details on: 

• Methods used for (i) empirical and (ii) modelling approaches. 

• A selection of example images, data tables and statistical results for empirical and modelled 

products representing a broadly current period 

• Preliminary discussion on potential application of the products and issues of uncertainty. 

 

2 Methods 
This section describes the methods adopted to prepare the baseline maps and data in both the 

empirical and digital modelling approaches.  

2.1 Empirical approach 
This approach links existing soil landscape spatial data with NSW SALIS soil profile data. Soil landscape 

map units are determined by the properties of the soils and the landscapes in which they occur. All 

soil landscape units have records with location of soil data points, type of survey (eg, MER, soil-

landscape mapping) and available soil field and laboratory data. 

The approach designates each landscape unit with a representative soil profile, or monitoring location, 

within the landscape unit. This soil profile was selected based on several ranked criteria to determine 

the most representative soil data from within a landscape unit, as follows: 

• Location within forest area:  soil profiles which fell into the NRC forest study area were 

compiled.  

• Soil landscape unit:    soil profiles were sorted based on the soil landscape units in which 

they were located. 

• Laboratory data availability:  soil profiles are sorted based on laboratory data availability 

(some monitoring locations may not have had any samples collected and/or analysed). 

• Representative ‘type profile’ status:     ’type profile’ designation belongs to soil profiles that 

are considered representative of the most common soil type of some portion of the soil 

landscape. Type profiles are generally assigned to all ‘facets’  or parts of a landscape that 

have different soil types (soil properties) and generally different management 

considerations. Since facets are not defined in our published soil landscape linework, 

identifying the ‘type profile’ information of the largest facet is an important way to 

represent soil attributes for an entire map unit. Type profiles for a landscape may fall 

outside of the forest area.  In some cases, a soil profile in forested land was selected ahead 

of a ‘type profile’ designated profile because of the significant affects that a forested land 

use has on surface soil properties, particularly organic carbon. 

• Forest condition representativeness: where multiple soil profile locations occur within the 

forest area within a landscape unit, this measure distinguishes soil profiles characterised by 

forested land management, prioritising it over data which may have come from cleared or 

pasture areas, for example. 
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Based on the above criteria, a soil profile was selected to represent the soil landscape unit, and the 

field and laboratory results for each soil property are here considered to be representative of the 

whole landscape unit. The laboratory data, laboratory method and data source for the indicators are 

presented in Table 1. 

Table 1: Soil properties: source, laboratory methods and profile numbers for empirical analysis approach 

Soil 

property 

Units Source and laboratory method1  No. of 

profiles2 

SOC                 %,  from SALIS; mainly Walkley-Black wet oxidation (C6A1) but small 

proportion of Heanes wet oxidation (6B1) and LECO combustion 

methods (6B2, 6B2b and 6B3)  

1725 

pHca pH units from SALIS; pH of 1:5 soil/0.01M calcium chloride extract (4B1). 

Includes conversions from pH 1:5 soil/water suspension (4A1) 

using approach of Henderson and Bui (2003)  

1976 

Emerson  

Aggregate 

Test 

8 class 

system 

from SALIS; SCS method (513.98)  1453 

1 Methods as listed in OEH (2017) and described in Rayment and Lyons (2011). 

2  Does not include some additional profiles used from outside of forest study area 

 

This product provides a broad indication of likely soil conditions within forest areas, and serves to 

identify new sites for further sampling in future programs (eg, revisiting of MER sites or collecting 

additional data from under-sampled soil landscape units and facets) to ensure targeted and 

informative data collection and effective distribution of resources. 

The resulting soil landscape profile data quality categories were as follows: 

• High confidence: a profile with laboratory data within the forest area and is within the 

dominant facet of the landscape unit. 

• Moderate confidence: a profile with laboratory data within the forest area but may not be 

within the dominant facet of the landscape unit. 

• Low confidence: no profiles with laboratory data within the forest area, but we have 

representative lab data for another part of the landscape. 

• No data: no profiles with laboratory data exist within the landscape. 

Total profile points with suitable laboratory data from SALIS across the NRC study area amounted to  

almost 2100, with locations as shown on Figure 1. 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX A: Digital soil mapping project update reports 

4 

 

 

Figure 1: Spatial distribution of soil profiles with laboratory data across RFA regions and Yarrowitch example 

study area  

2.2 Digital soil mapping approach 
Digital soil mapping provides for statistically verifiable estimates of soil properties using quantitative 

modelling techniques based on relationships between soil properties and the environment 

(McBratney et al. 2003).  The statistical relationships are developed over known soil data points with 

known environmental conditions and then extrapolated over broad regions using continuous 

environmental data grids (e.g. climate grids, digital elevation models or gamma radiometric data 

grids). 

The modelling approaches applied in this project were multiple linear regression and Random Forest 

decision tree methods. Figure 2 provides an overview of the DSM process adopted to develop the 

baseline maps.  

 

 

MER profile with lab data 

SALIS profile with lab data 

Forest extent 
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Figure 2: Overview of the digital soil mapping process 

2.2.1 Soil data 
The required soil data were primarily derived from the NSW Soil and Land Information System 

(SALIS). The spatial distribution of the data points is shown in Figure 1. Additional sources included 

the 2008 NSW monitoring, evaluation and reporting (MER) program (DECCW 2009; Chapman et al. 

2011; OEH 2014). Total P was derived from all eastern State natural resource agencies, as described 

in Gray et al. (2015b). Bulk density data were acquired from the Soil and Landscape Grid of Australia 

(SLGA) (Grundy et al. 2015; Viscarra Rossel et al. 2015) in conjunction with data from the MER 

program  

Soil property values reported for the original depth intervals of each soil horizon were converted 

into standard depth intervals of 0-10, 10-30, 0-30 and 30-100 cm using the equal area splining 

process of Bishop et al. (1999). Table 2 lists the available profile numbers with laboratory data and 

the data source and laboratory method for each key soil indicator. 

http://www.environment.nsw.gov.au/soils/data.htm
http://www.csiro.au/soil-and-landscape-grid
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Table 2: Soil properties: source, laboratory methods and profile numbers for digital mapping approach  

 Soil 

property 

Units Source and laboratory method1  No. of 

profiles 

SOC                  

 

SOC 
fractions 

%,  

 

Mg/ha 

from SALIS; Walkley-Black wet oxidation (C6A1)  

 

sourced from Gray et al. 2019 based on MER dataset mid-infrared 

(MIR) spectroscopy, 

1721 

4272 

 

pHca pH units pH of 1:5 soil/0.01M calcium chloride extract (4B1). Includes 

conversions from pH 1:5 soil/water suspension (4A1) using 

approach of Henderson and Bui (2003)  

2061 

P total mg/kg 

(ppm) 

Maps sourced from OEH (2018); various methods.  18043 

Bulk 

density 

Mg/m3 derived from SLGA maps and MER data applying P14A or similar 

core method (mass of known vol.)  
644 

1 Methods as listed in OEH (2017) and described in Rayment and Lyons (2011). 
2 from MER NSW dataset  
3 from SE Australia dataset 
4 MER NSW forest dataset used to identify change, building on base maps from SLGA  

 

2.2.2 Model variables 
The variables applied in the modelling process representing the main soil forming factors of climate, 

parent material, topography, biota-land management and age of soil (Jenny 1941), together with a 

bushfire related variable, as listed below. 

• Rain_1990_2010: mean annual rainfall over this 20 year period; sourced from SILO (Scientific 

Information for Land Owners) website (https://www.longpaddock.qld.gov.au/silo/  ) 

• Tmax_1990_2010: mean annual daily maximum temperatures over this 20 year period; 

sourced as above 

• Tmin_1990_2010: mean annual daily minimum temperatures over this 20 year period; 

sourced as above 

• Silica_index: the approximate silica content (%) of the parent material, which relates to its 

lithology and the resulting soil type (Gray et al., 2016).  The statewide grid is based on 

geological mapping (DPI Geological Survey of NSW, undated) and NSW soil and land mapping  

from eSPADE (DPIE 2020) 

• Radk, Radu and Radth: radiometric potassium, uranium and thorium, an indicator of parent 

material chemistry; sourced from Geoscience Australia (Minty et al., 2009). 

• Kaolin, Illite and Smectite: the relative proportion of these clays derived from near infra-red 

(NIR) spectroscopy (Viscarra Rossel, 2011); sourced through the CSIRO Data Access Portal 

(https://data.csiro.au/dap/search?q=TERN+Soil ). 

• TWI: topographic wetness index, representing potential hydrological conditions (Gallant and 

Austin, 2015); sourced through the CSIRO Data Access Portal. 

• FDI: forest disturbance index, a new index developed for this project reflecting the intensity 

of disturbance associated with the forest management; ranging from 1 for relatively 

https://www.longpaddock.qld.gov.au/silo/
http://espade.environment.nsw.gov.au/
https://data.csiro.au/dap/search?q=TERN+Soil
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undisturbed reserves (formal and informal) areas; 2 for forestry harvesting operation areas 

and 3 for privately owned or leased forest typically subject to periodic stock grazing. Further 

description is provided in Update 5 

• Total_VegCov: total vegetation cover (%); includes photo-synthetic (living) and non-photo-

synthetic (dead) vegetation cover, being average (mean) cover from year 2000 to date of 

sampling, sourced from CSIRO MODIS fractional vegetation data (Guerschman and Hill, 

2018). 

• W_index: weathering index, representing the degree of weathering of parent materials, 

regolith and soil, based on gamma radiometric data (Wilford, 2012),  an indicator of the age 

of the soil and landscape; sourced from Geoscience Australia. 

• Years_sinceFire: The number of years since a major bushfire. For training data, we used the 

number of years prior to the date of sampling; sourced from Rural Fire Service (via NRC data 

portal) 

 

2.2.3 Spatial modelling, mapping and quality assessment 
Modelling of soil properties was carried out using R statistical software (R Core Team, 2020). The soil 
dataset was apportioned 80% as training data and 20% as validation data using a simple random 
data splitting approach. Modelling applied a combination of multiple linear regression (MLR) and 
Random Forest decision tree techniques. An overview of the process, as applicable across all of 
NSW, is presented in Figure 2. Final maps were prepared using 10 bootstrap samples and stacking 
the resulting outputs (using customised R code). The 10 bootstrap iterations were considered 
sufficient for the purpose of this study. A natural log transformation was applied to the SOC values 
to achieve normality. Upper and lower 95% prediction interval maps were derived using results from 
the 10 iterations.  

The models and final maps for each depth interval were validated using the validation datasets as an 
independent assessment of model quality. Lin’s concordance correlation coefficient (LCCC) was used 
to measure the level of agreement of predicted values with observed values relative to the 1:1 line 
(Lin 1989). Root mean square error (RMSE), mean absolute error (MAE) and mean error (ME, 
indicating positive or negative bias) of validation results were also determined. These statistics, 
together with the confidence interval maps, provide an indication of uncertainty levels that are 
considered sufficient for the purpose of this study. 

2.2.4 Modelling of hillslope erosion 
Soil erosion by water includes sheet and rill erosion (also referred to as hillslope erosion) is a major 

form of land degradation in NSW. Hillslope erosion rates was estimated using the revised universal 

soil loss equation (RUSLE; Renard et al. 1997) in unit of tonnes per hectare per year (t ha-1 yr-1).  

As RUSLE was originally developed for agricultural soils, the cover and management, or C factor, is 

the major limiting factor for its application in a forest environment. We developed a method (Yang 

2014; Yang 2020) on the C factor estimation based on the monthly fractional vegetation cover 

including photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS). 

This is the best available method of remotely assessing cover for erosion predictions and is well 

suited to environments where climate is highly variable and non-green vegetation is a significant 

component of the overall cover (McKenzie et al. 2017). 

The rainfall-runoff erosivity (R) factor (MJ mm ha-1 hr-1 yr-1) in RUSLE was estimated using a daily 

rainfall erosivity modelling for NSW and long-term rainfall records (Yang and Yu 2015). The soil 

erodibility (K) factor (t ha h ha-1 MJ-1 mm-1) was estimated from digital soil mapping products and soil 

profile data (Yang et al 2017). Slope length and steepness (LS, unitless) factor was calculated, on 
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catchment basis, from hydrologically corrected digital elevation model (SRTM DEM-H) based on 

comprehensive algorithms considering cumulative overland flow length (Yang 2015). The time series 

groundcover products (the latest version, V3.1.0) from Moderate Resolution Imaging 

Spectroradiometer (MODIS) were used to estimate groundcover and the cover and management (C, 

unitless) factor (Yang 2014). Time-series hillslope erosion was estimated and mapped on monthly 

and annual bases from 2000 to present. Yang (2020) summarised the state and trends of hillslope 

erosion in New South Wales (NSW). 

The hillslope erosion across the RFA regions are extracted and analysed. We used the highest 100th 

percentile groundcover to represent the baseline condition and estimated the corresponding 

hillslope erosion rates across the forestry areas on monthly basis. 

3 Results 
This section presents a selection of maps and associated data derived from both the empirical and 
digital mapping approaches. Statistical validation results are presented for the latter approach.  

3.1 Empirical approach 
A map of soil landscape profile data confidence is provided in Figure 3. There are 2164 soil landscape 

map units that cover the RFA regions (as determined by the NRC 2008 woody vegetation study 

areaa), which has a total area of 87 000 km2. These map units come from many 1:100,000 surveys 

and range in detail and confidence.  Of these, 788 map units covering 16 750 km2 or almost 20% of 

total study area, are identified across these forested areas as class: No Data, ie, containing no soil 

type profile with laboratory information suitable to inform monitoring in forest environments.  

There are a further 46 map units which have profiles with laboratory data analysis, but are not 

presented in this report because of laboratory result compatibility issues. For example, the organic 

carbon map currently represents results from the Walkley-Black wet oxidation test method only. 

Some recent organic carbon concentration data were derived using the LECO test method, 

particularly in the alpine region of NSW.  

Maps of organic carbon (in %), pH (CaCl2) and Emerson aggregate test for surface soil across the 

forest area are presented in Figures 4, 5 and 6  respectively.  Information is representative of the 

best soil profile from each map unit within the forested areas. 

Not all type profiles with laboratory data have undergone the same analysis as is illustrated in the 

empirical method maps.  Generally, type profiles undergoing laboratory analysis include one of two 

laboratory test suites: 

• Comprehensive: good range of physical, chemical and cations tests e.g. pH, EC, soil organic 

carbon, cation analysis, Emersion aggregate test and particle size analysis 

• Minimal: pH, EC and Emerson aggregate Test only 

 

Since not all the key indicators for forest soil monitoring are available for all type profiles, some 

knowledge gaps also occur in areas with type profiles with minimal test suites. 

 

a The NRC 2008 woody vegetation layer is consistent with the time at which the MER program was undertaken and much of 

our best baseline monitoring data were collected. Future modelling is to incorporate more recent forest cover products. 
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Figure 3: Soil landscape data confidence classes of the RFA regions. 
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Figure 4: Organic carbon concentrations of surface soil in the RFA regions using representative soil map unit 

profiles  
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Figure 5: pH levels (CaCl2) of surface soil in the RFA regions using representative soil map unit profiles 
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Figure 6: Emerson Aggregate Test of surface soil in the RFA regions using representative soil map unit 

profiles 
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3.2 Digital soil mapping approach 

3.2.1 Soil organic carbon 
SOC concentration maps (in %) for the 0-30 cm across the forest area are presented for current 
(approx. 2010) baseline in Figure 7. Maps are included for mean, plus upper and lower 90% 
confidence. Similar layers have been prepared for the 0-10, 10-30 and 30-100 cm depth intervals. An 
example fine scale map for the current baseline over the Yarrowitch area of mid north coast region is 
presented in Figure 8. 

 

Figure 7: Estimated current surface soil organic carbon concentrations (%) across RFA regions, 0-30 cm 
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Figure 8: Estimated current surface soil organic carbon concentrations (%), Yarrowitch area, mid north coast 
NSW region, 0-30 cm 

 

Map validation statistics for all four depth intervals are presented in Table 3, with a visual 
representation of validation performance for the 0-30 depth interval shown in Figure 9. 

 

Table 3: Validation results for SOC maps 

Depth (cm) Lins CCC RMSE MAE ME 

0-10 0.37 0.57 0.46 0.03 

10-30 0.35 0.70 0.57 0.01 

0-30 0.39 0.57 0.47 0.02 

30-100 0.17 0.96 0.78 0.02 

CCC: concordance correlation coefficient; RMSE: root mean square error; MAE: mean absolute error; ME: mean 
error 
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Figure 9: Validation plot of SOC 0-30 cm map 

 

Maps for each of the three soil carbon fractions: particulate organic carbon (POC), humus organic 

carbon  (HOC) and resistant organic carbon (ROC) over the 0-30 cm interval are presented in Figure 

10. These were reported fully in Gray et al (2019).   
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Figure 10: Estimated SOC fractions: POC, HOC and ROC across the RFA regions at 0-30 cm (tonnes/ha), from 

Gray et al. (2019) 
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3.2.2 pH 
Maps of pHca for the 0-30 cm across the forest study area are presented in Figure 11. Maps are 
included for mean, plus upper and lower 90% confidence levels and represent current baseline 
(approx. 2010). Similar layers have been prepared for the 0-10, 10-30 and 30-100 cm depth intervals. 
An example fine scale map for the current baseline over the Yarrowitch area of mid north coast 
region is presented in Figure 12. 

 

 

Figure 11: Estimated current surface soil pH across RFA regions, with mean and lower and upper 90% 

confidence intervals, 0-30 cm (pH units) 
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Figure 12: Estimated current surface soil pH across RFA regions, Yarrowitch area, mid north coast NSW 

region, 0-30 cm  

 

Map validation statistics for all four depth intervals are presented in Table 4, with a visual 
representation of validation performance for the 0-30 depth interval shown in Figure 13.  

 

Table 4: Validation results for pH maps 

Depth (cm) Lins CCC RMSE MAE ME  

0-10 0.37 0.52 0.38 +0.03  

10-30 0.39 0.49 0.36 +0.02  

0-30 0.35 0.54 0.39 +0.05  

30-100 0.31 0.59 0.42 +0.02  

CCC: concordance correlation coefficient; RMSE: root mean square error; MAE: mean absolute error; ME: mean 
error 
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Figure 13: Validation plot of pHca 0-30 cm map 
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3.2.3 Bulk density 
Maps of bulk density for the 0-30 cm across the forest study area are presented in Figure 14. Mean 
values are shown for the current baseline (from SLGA, approx. 2010) and under the natural 
undisturbed conditions (modelled in this project, using the SLGA map as a base). Similar layers have 
been prepared for the 0-10, 10-30 and 30-100 cm depth intervals. 

 

Figure 14: Estimated current surface soil bulk density across RFA regions (mg/m3) from SLGA   
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3.2.4 Hillslope erosion 
Maps representing hillslope erosion rates over the RFA regions, derived from RUSLE modelling, are 

presented in Figure 15 for baseline (2001-2020) condition and Figure 16 for current baseline. An 

example fine scale map for the current baseline over the Yarrowitch area of mid north coast region is 

presented in Figure 17.   

 

 

Figure 15: Modelled mean hillslope erosion (t ha-1 yr-1) across RFA regions, 2001-2020, based on RUSLE 

modelling with 100% percentile ground cover 2001-2020 

 

Modelled baseline 
erosion (t ha-1 yr-1) 
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Figure 16: Modelled current hillslope erosion (t ha-1 yr-1) across RFA regions, based on RUSLE modelling, 

average 2001-2020 

Modelled current 
erosion (t ha-1 yr-1) 
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Figure 17: Modelled current hillslope erosion rates, Yarrowitch Region 
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3.2.5 Total phosphorus  
A map of P total for the 0-30 cm across the forest area is presented in Figure 18. Similar layers have 

been prepared for the 0-10, 10-30 and 30-100 cm depth intervals. These were derived from digital 

soil mapping over NSW as reported in OEH (2018). An example of a fine scale map over the 

Yarrowitch area of the mid north coast region is presented in Figure 19. 

 

 

Figure 18: Modelled current P total across RFA regions 
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Figure 19: Modelled current P total, Yarrowitch area, mid north coast NSW region, 0-30 cm  

  



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX A: Digital soil mapping project update reports 

26 

 

4 Discussion 

4.1 Overview 
Data and spatial products have been prepared to represent baseline soil conditions across the RFA 

regions of eastern NSW. The products have been developed using a combination of empirical 

approaches using existing soil landscape data, together with a digital soil mapping approach. 

The baseline is broadly considered as the period leading up to approximately 2010. This coincides 

with the end of a period of extensive soil data collection by the NSW Government around the region, 

including the suite of data collected for the NSW 2008-09 MER program.   

The baseline products include: 

• General soil landscape descriptions. 

• Point profile data for 2000 profiles in the study area with available key indicator laboratory 

data. 

• Polygonal maps based on soil landscape boundaries, with the key soil condition indicators 

represented by the most reliable representative soil profile. 

• Identification of soil landscape units with inadequate soil profiles to provide for reliable 

baseline. 

• Digital soil maps (rasters) for several of the soil condition indicators at 100 m resolution, 

including soil properties and sheet erosion rates. 

 

There is general consistency between the outputs of the two approaches. 

Data have been provided on a suite of soil condition indicators, including SOC, component carbon 

fractions, pH, bulk density, sheet erosion, aggregate stability and total P. Other indicators are being 

explored for additional inclusion, such as EC, N, topsoil depth and soil biological diversity.  At this 

stage it is not possible to reliably assess the condition of all of these indicators, ie, the extent of 

declines relative to the relatively undisturbed reference state. This means we are not yet in a 

position to consider all indicators in a combined holistic manner to gain a broad assessment of the 

condition of NSW forest soils. Although preliminary assessment is possible for some indicators, a 

meaningful assessment of changes and trends in soil condition requires an ongoing monitoring 

program.   

 

4.2 Use of products 
The baseline products presented here provide information on broadly current conditions of key soil 

indicators over the RFA regions. They will form the basis of ongoing monitoring programs and trend 

analysis. An identification of apparent trends based on modelling with existing data will be explored 

further in the next phase of the project. 

The profile points with comprehensive survey descriptions and laboratory data provide a valuable 

resource for ongoing monitoring programs. Revisiting of these sites with a repeat of laboratory 

analysis will provide an important record of change in soil properties and condition at these sites. 

Particularly valuable in this respect are the MER sites which were sampled according to a rigorous 

and repeatable sampling protocol (DECCW 2009), including 10 sub samples within a 25 m by 25 m 

grid at each site. 
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From the products produced to date, it is possible to identify significant gaps in data quantity and 

quality in the soil landscape units and geomorphic facets across the study area.   Similarly, gaps in 

soil data over environmental variable space, ie, combinations of the environmental predictors can be 

identified. This knowledge will be important in guiding future soil condition monitoring programs.     

The spatial maps produced by both the empirical and modelling approaches provide a general guide 

to soil properties and conditions throughout the study area. They may reveal apparent soil 

limitations and management requirements. However, they cannot be relied on at local scale or 

individual points. Reliance can only be placed on data from the individual soil profile points, 

particularly where rigorous sampling and testing protocols were implemented. Where soil conditions 

at a site vary significantly from that indicated by the maps, these may indicate unusual controlling 

influences, including excessive land management pressures.  

 

4.3 Issues of uncertainty 
As noted above, the spatial maps provided cannot be relied upon at local scale or individual sites. 

Soils vary in response to wide range of environmental and land management factors and it is not 

realistically possible to accurately depict these variations in soil distribution, even with extensive 

field survey or sophisticated modelling techniques.   

The empirical derived maps relied on the selection of a single most suitable soil profile to represent 

the entire soil-landscape unit. Thus, these do not reveal the variations that occur with each unit. 

Many soil-landscape units did not have suitable representative soil profiles collected within the 

forested component of that unit. In these cases, the best available profile was taken from a non-

forested site in that unit, meaning it is of less reliability for the purpose of this study.  The confidence 

level of each selected type profile is indicative of the reliability of that profile selection and is 

identified in the data products.  

The empirical mapping products are based on catchment scale (1:100,000 scale) soil surveys and 

data, which identify broad scale soil-landscape units. However, a more detailed local scale product 

(approximately 1:25,000) would improve effectiveness for forest soil monitoring. Disaggregation of 

soil mapping into its sub-landscape areas called ‘facets’, would provide greater delineation of 

different soils types, soil properties and managements requirements that generally occur within the 

broader soil-landscape units. This will allow information from more than one soil profile in each soil 

landscape to be used to inform map products.  

The digital soil mapping and modelling products are subject to various inherent uncertainties, as has 

been reported by Nelson et al. (2011), Bishop et al. (2015) and Robinson et al. (2015).  

The general uniformity of environmental conditions in the forested area of eastern NSW, such as the 

typical moderate to high rainfall with low fertility soils and moderate to steep terrain, hinders the 

modelling and digital mapping process. The region lacks clear differences in many of the control 

factors that normally lead to strong predictive models, such as large variation in soil fertility, terrain, 

land use and vegetation cover. Validation results of modelled maps were not strong, with Lin’s 

concordance correlation coefficients rarely exceeding 0.4 (where a value of 1.0 denotes perfect 

accuracy).  

A common weakness in digital soil mapping is an inadequate coverage of all areas of covariate space. 

Not all combinations of environmental and forest management conditions were adequately 

represented in the dataset, resulting in imperfect models. 
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Weaknesses are apparent in several of the environmental grids used. A key variable is the lithology 

(silica) layer, which typically was the most powerful controlling variable. Although lithology for site 

data is generally reliable, the broader grid used to create the final maps is less reliable as it relies on 

coarse scale geological mapping. The vegetation layer does not distinguish between different forms 

of vegetation cover, ie, ground cover or canopy cover, which can contribute to imprecise soil-

vegetation relationships. The variable representing the number of years since bushfire is of coarse 

scale and would not reliably represent variations in intensity of the fire throughout the burnt areas.   

Likewise, the newly created forest management index is an oversimplification of variations in 

management intensity. 

Variation in the dates of sampling of profiles within the SALIS dataset means the temporal variation 

in climatic conditions within a single region will contribute to differing influences on soil properties, 

even where they were spatially close.  Errors in soil data can also be introduced through field 

sampling and laboratory inconsistencies. The Walkley-Black method of soil carbon analysis, as used 

in this dataset, has been stated to under-estimate true values (Skjemstad et al. 2000). The MIR 

analysis of soil carbon fractions is subject to significant uncertainty. 

There is uncertainty in the effectiveness of combining the various soil condition indicators into a 

single meaningful index of soil condition, which has not been attempted at this stage of the project. 

 

5 Conclusion 
This preliminary report has presented results on baseline soil conditions over the RFA regions of 

eastern NSW, representing the period of approximately 2010.  A suite of broadly current baseline 

data and spatial map products are presented. The spatial products will be available as digital images 

for viewing in GIS mode. 

Ongoing analysis in the project will further explore apparent trends in soil condition with forest 

management, bushfire and climate change. Further analysis of key data gaps will continue. An 

ongoing monitoring program is required to gain a comprehensive picture of the condition of NSW 

forest soils.   
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1 Introduction 
The need to maintain health and stability of forest soils in order to protect forest ecosystems and 
associated environmental, cultural and economic values has been recognised by the NSW Natural 
Resources Commission. Current knowledge on the baseline condition of soils over the eastern NSW 
forest system was presented in the Baseline for Indicators Report (DPIE, submitted to NRC April 2021)  

It is important to understand the drivers of soil condition operating in the forest environment, that is, 

the main environmental and land management factors that influence the status of key soil condition 

indicators. This is a pre-requisite to understanding and gaining knowledge on their potential 

trajectories into the future. Forest soil condition may change over time subject to natural and human 

induced influences. A critical natural influence is climatic change. Human influences include 

disturbance from land management such forestry harvesting operations and grazing stock access. 

Influences may be transitional between natural and human induced such as changes in natural fire 

regimes or faunal populations influenced by human activities. 

For broader environmental protection issues, forest soil condition is most usefully defined as the 
decline in key indicators compared to a relatively undisturbed reference soil. This is similar to the 
definition adopted in the 2008-09 NSW Monitoring Evaluation and Reporting (MER) program 
(Chapman et al. 2011, OEH 2014). This contrasts with other soil condition definitions that relate to soil 
productivity for agricultural and commercial forest growth. Knowledge on the extent of change of key 
indicators such as organic carbon, pH or bulk density (soil structure) from a relatively undisturbed soil, 
is vital for assessing potential impacts on the health of the entire forest ecosystem.  

Ongoing monitoring is important to identify trends in forest soil condition. Monitoring programs 

involving periodic return to selected forest monitoring sites, with collection of key field and laboratory 

data, provide valuable data to reliably assess change in forest soil condition and apparent trends. 

However, at present there are regrettably few such empirical data from forest monitoring sites 

available to identify drivers and trends. Modelling based on current available data provides an 

alternative means to identify key drivers of forest soil condition and their trends. 

This report presents results of a digital soil modelling (DSM) approach to identify key drivers and 

apparent trends in forest soil condition. More specifically it: 

• Identifies key environmental and land management drivers for a number of soil condition 

indicators, including SOC, pH, bulk density, phosphorous, sodicity (dispersion percent) and 

hillslope erosion  

• Where data allowed, provide maps and examines trends of change in soil condition 

indicators due to human disturbance, climate change and bushfire. 

2 Methods 

2.1 Overview 
The project adopted a DSM approach involving both multiple linear regression and random forest 

techniques to identify key factors influencing each of the main soil condition indicators. The change in 

several of these indicators due to human disturbance, climate change and bushfire was modelled and 

mapped by applying a substitution process as outlined more fully in s.2.3. The change in rates of 

hillslope erosion was modelled and mapped with ArcGIS techniques as outlined in s.2.4. Examples of 

fine scale map products are presented where possible over a small region around Yarrowitch in the 

lower north coast of NSW.  
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2.2 Data and environmental variables  
The soil data and environmental variables applied in this phase of the project were outlined in the 

Baseline for Indicators Report (Update 4). 

Further details on the key variables used in the soil condition trend analysis are provided below: 

• Rainfall (1990_2010): mean annual rainfall over this 20 year period; sourced from SILO 

(Scientific Information for Land Owners) website 

(https://www.longpaddock.qld.gov.au/silo/). Climate data used for climate change 

projections was accessed from the NARCliM program  

• Temperature max (1990_2010): mean annual daily maximum temperatures over this 20-year 

period; this and future climate projections sourced as above 

• Forest disturbance index (FDI): a new index developed for this project reflecting the intensity 

of disturbance associated with the forest management; ranging from 1 for relatively 

undisturbed formal or informal reserves; 2 for forestry harvest operation areas; and 3 for 

privately owned or leased forest or woodland typically subjected to periodic stock grazing 

(see Table 1, Figures 1 and 2). This was derived by combining maps of NPWS estate, Forest 

Management Zones map (Forestry Corporation of NSW 2020) and NSW land use 2017 maps 

(DPIE 2020a). NPWS estate was all allocated FDI 1. The Forest disturbance index map 

enables distinction between forest protection areas (FDI 1) and forest harvest operation 

areas (FDI 2). All remaining woody area was allocated FDI 3, being identified as either “other 

natural” or “native grazing”, and is considered to have the highest level of ongoing 

disturbance, primarily from uncontrolled stock grazing.  

• Total vegetation cover (%): includes photo-synthetic (living) and non-photo-synthetic (dead) 

vegetation cover, being average (mean) cover from year 2000 to date of sampling, sourced 

from CSIRO MODIS fractional vegetation data (Guerschman and Hill, 2018). 

• Years_since Bushfire: The number of years since a major bushfire. For training data, it 

applied the number of years prior to the data of sampling; for mapping it applied the 

number of years prior to 2010; sourced from Rural Fire Service (via NRC data portal) 

 

Table 1:  Forest tenures, zones and Forest Disturbance Index (FDI) 

Tenure Zone Forest Disturbance 
Index (FDI) 

NPWS estate All 1 

Forest Management Zonesa  Zone 1 - Special Protection Zone 1 
 Zone 2 - Special Management Zone 1 
 Zone 3A - Harvesting Exclusions Zone 1 
 Zone 3B - Special Prescription Zone 1 
 Zone 4 - General Management Zone 2 
 Zone 5 - Hardwood Plantations Zone 2 
 Zone 6 - Softwood Plantations Zone 2 
 Zone 7 - Non Forestry Use Zone 3 
 Zone 8 - Areas for further assessment 2b 
 Zone 90 – Unzoned 3 

Private and leasehold lands 
(often subject to stock grazing) 

All  3 

a NSW Government (2018); Sate Forests NSW (1999) 
b This was incorrectly allocated as FDI 3 in the current study 
 

https://www.longpaddock.qld.gov.au/silo/
https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW
https://data.nsw.gov.au/data/dataset/forest-management-zones
https://data.nsw.gov.au/data/dataset/forest-management-zones
https://datasets.seed.nsw.gov.au/dataset/nsw-landuse-2017-v1p2-f0ed
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Figure 1: Forest disturbance index over RFA regions 

 

Figure 2: Forest disturbance index over Yarrowitch Region 
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2.3 Modelling methods 
The analysis was undertaken using digital soil mapping (DSM) techniques. An overview of the use of 
DSM in this project was provided in the Baseline for Indicators Report. A combination of multiple linear 
regression (MLR) and random forest (RF) techniques were applied, to generate spatial products with 
100 m resolution. It was performed in R software (R Core Team 2020), with further analysis and map 
manipulation in ESRI ArcGIS.  

By examining ‘variable importance plots’ generated with RF and standardised regression coefficients 
with MLR, the relative influence of each variable used in the modelling, and the direction of influence, 
could be elucidated. The two different approaches do not give identical results but there is typically 
high consistency between them. They provide valuable data for identifying key drivers of each soil 
condition indicator. 

The analysis of trends in soil condition applied DSM techniques with a ‘space-for-time substitution’ 
process.  This process involves use of current spatial patterns to predict past or future trajectories of 
ecological systems (Pickett 1989; Blois et al. 2013). Spatial patterns are used to represent temporal 
patterns. The process, as summarised in Figure 3, involves establishment of a baseline, then a repeat 
of the modelling under a new regime, typically involving the substitution of a single variable, such as 
the forest disturbance index (FDI). The difference between the two modelled outputs provide an 
indication of the change. It can identify whether the change in the subject variable has resulted in an 
increase or decrease of the soil condition indicator, and the magnitude of such change. 

In the analysis of trends with human disturbance, a relatively undisturbed baseline (reference) 
condition was represented by FDI 1, ie, equivalent to formal or informal reserve status across the 
entire study area. Then the model was rerun with the current (approx. 2010) disturbance status (ie, 
FDI 1, 2 and 3) to assess the influence of the changed disturbance regime.  For several soil indicators, 
no clear trends with forest disturbance index were discernible, so the mapping of change with 
disturbance was not undertaken. Similar concepts and approaches were applied in assessing trends in 
soil indicators with projected climate change (Gray and Bishop 2018, 2019) and bushfire recovery 
periods (Gray 2021). 

Validation statistics for each baseline map, as presented in Baseline for Indicators Report, provide an 

indication of their performance and reliability of the DSM products. These statistics included R2, Lin’s 

concordance correlation coefficient and mean absolute error. Combining upper and lower 90% 

confidence intervals provides further indication of confidence in the change products. 

Stratification of key results by forest disturbance index (FDI) was undertaken and presented in data 

tables. These reveal the different levels of change in the lands of different disturbance intensity, ie, 

formal or informal reserves, through forests available for harvesting, to privately owned or leased 

and grazed forests.  Further division by Forest Agreement Region was undertaken for some 

indicators. 

Modelling of changes and trends in hillslope sheet erosion was based on RUSLE, following methods 

established in Yang (2020), as outlined in the Baseline for Indicators Report. The baseline erosion 

rates were generated by applying the highest 100th percentile groundcover over the years 2001 to 

2020 together with the other RUSLE variables. Current erosion rates were generated using actual 

groundcover for each month over the 2001-2020 period. Comparing the current with the baseline 

levels provided relative change from current to baseline erosion rates. 
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Figure 3: Process for deriving change in soil indicators 

3 Results 
This section presents modelling results on key driving factors and trends for key soil condition 

indicators, based on changes in forest management, climate change and bushfire  

 

3.1 Soil organic carbon  

3.1.1 Key drivers 
The relative influence of the various environmental and land management variables on SOC is 

presented in the variable importance plot of Figure 4. The associated positive or negative sign 

reveals the trend of influence. These plots present only the top ten of the 15 variables initially 
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applied. The results are further informed by MLR standardised regression coefficients given in 

Appendix 1. 

 

Figure 4: SOC variable importance plot, 0-30 cm 

Climatic factors are revealed as the main drivers. SOC increases with decreasing temperatures and 

increasing rainfall. These factors control the production of organic matter and the extent of its 

mineralisation, decomposition and subsequent loss from the soil  (Sanderman et al 2010; Wiesmeier 

2019). SOC levels are typically highest under cool moist conditions and lowest in hot and dry 

conditions (Gray et al. 2015). The influence of projected climate change on SOC is examined further 

in s.3.1.3. 

Parent material and soil type as represented by the silica index is revealed as a key driver, being 

ranked just below the climatic indicators. SOC increases with decreasing silica of parent material, 

indicative of soils of higher clay content and fertility, which contribute to higher vegetation growth 

and stabilisation of soil carbon.  Other parent material/soil variables such as radiometric K and Th, 

and kaolin clay proportion also feature in the top 10 variables. 

The forest disturbance index (FDI) demonstrates a negative trend, indicating that the higher the level 

of forest disturbance, the lower the SOC levels. Highest SOC levels are associated with formal or 

informal reserves sites, then decreasing to forests available for harvesting and lowest levels 

associated with privately owned or leased, often grazed forest sites. This variable is used as a basis 

for modelling the change with disturbance as presented in the following s.3.1.2. Similarly, the 

positive influence of vegetation cover on SOC content is demonstrated, however it does not rank as 

dominantly in this study area as it does when non-forested and agricultural lands are also included in 

modelling programs.     

The variable Yrs_sinceFire representing the length of time since the last major bushfire (not 

prescribed burn) is revealed to be a strong positive driver of SOC. Levels increase with time since the 

major fire event. This relationship is examined more closely in s.3.1.4 

Slope gradient is positively correlated with SOC in the RFA regions. This suggests the steeper sites 

have overall higher vegetation densities with soil less disturbance. However, the topographic 

wetness indicator (TWI) did not appear as a significant driver.  



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX A: Digital soil mapping project update reports 

7 

 

 

3.1.2 Change with increasing disturbance 
Figures 5 and 6 present the change in SOC content from a hypothetical status of relatively 

undisturbed environment to current probable disturbance status (approx. 2010), based on the 

change in FDI. All other variables were held constant, for example, no change in climate was 

considered. 

A significant widespread loss of SOC is revealed due to this increased degree of disturbance. Declines 

vary from zero to moderate (>2%) for the 0-30 cm interval. Larger declines are, as expected, 

associated with the areas of higher disturbance, as revealed by Table 2. No decline occurs over 

currently reserved lands, then moderate declines (mean -9.3% in relative terms for 0-30 cm depth) 

over forestry harvest operation lands and highest declines (mean -19.5% in relative terms) over 

privately owned or leased, often grazed forest lands.  The extent of decline decreases with depth. 

Table 2:  Mean relative change in SOC with forest disturbance (%) 

Forest disturbance index 0-10 cm 10-30 cm 0-30 cm 30-100 cm 

1:  Relatively undisturbed  0 0 0 0 

2:  Partial disturbance -10.3 -9.9 -9.3 -5.0 

3:  Moderate disturbance (periodic grazing) -21.7 -20.9 -19.5 -10.3 

 

Even greater declines are likely to have been demonstrated if a decrease in vegetation cover had 

been incorporated into the modelling process. It is evident the increasing ground disturbance is 

responsible for lower input of organic material to soils and greater decomposition/mineralisation 

and ultimately loss of soil carbon.  

The rate of decline is not uniform, even within each FDI class, but is dependent on the precise 

combination of environmental factors. Areas with the highest existing SOC levels, such as in wet 

locations and fertile low clay rich soils lose more SOC than areas with low existing SOC levels such as 

in drier locations with low fertility sandy soils. This higher loss applies in both absolute and relative 

terms, as demonstrated by Gray et al. (2016a). 

The change in SOC due to human disturbance for each RFA Region is presented in Table 3. It reveals 

the highest overall decline in the Upper North East subregion (>11% in relative terms, 0-30 cm). 

Declines are greatest in the surface soils. 

Table 3:  Mean relative change in SOC with forest disturbance by RFA region (%) 

RFA Region 0-10 cm 10-30 cm 0-30 cm 30-100 cm 

Upper North East subregion -12.7 -12.3 -11.4 -6.0 

Lower North East subregion -10.3 9.9- -9.2 -4.9 

Southern  -8.8 -8.5 -7.9 -4.2 

Eden  -7.7 -7.4 -6.9 -3.7 
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Figure 5: Predicted absolute and relative change (%) in surface SOC concentrations from a hypothetical 

relatively undisturbed reference condition to current condition across RFA regions 

 

Figure 6: Predicted relative change (%) in surface SOC concentrations from a hypothetical relatively 

undisturbed reference condition to current condition, Yarrowitch Region 
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3.1.3 Change from climate change 
The change in SOC stocks arising from projected climate change over NSW has been modelled by as 

part of NARCliM program (Gray and Bishop 2018, 2019). Results from that project suggest a marked 

decline over the NSW forest area to the far change period, centred around 2070, as shown by 

Figures 7 and 8. The change by RFA region or subregion is presented in Table 4. A mean relative loss 

of 17% for the 0-30 cm interval is projected over both North east subregions, rising to over 37% 

relative loss in the Southern region. The results represent the mean  of the 12 climate model 

projections applied in the NARCliM program. The magnitude of decline in SOC varied between the 

different climate models. 

Their work demonstrated that, again, the greatest losses in SOC occur in areas with currently high 

SOC stocks. Highland regions, particularly in the southern alps, are predicted to lose the largest 

quantity of SOC. 

The results suggest a continuing loss of SOC and associated soil condition irrespective of land 

management over the NSW eastern forests. This also has implications for identifying ongoing net 

carbon emissions from NSW lands, with respect to aiming for Net Zero Emissions (NSW Government 

2016; DPIE 2020b) and mitigating climate change.  

 

Figure 7: Predicted relative change in SOC stocks due to projected climate change to approx. 2070 (%) 
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Figure 8: Predicted relative change in SOC stocks due to projected climate change to approx. 2070, Yarrowitch 

Region (%) 

 

Table 4:  Mean relative change in SOC with climate change to approx. 2070 by RFA region (%) 

RFA Region 0-30 cm 30-100 cm 

Upper North East subregion -17.2 -37.6 

Lower North East subregion -17.0 -36.3 

Southern  -37.2 -64.0 

Eden  -31.1 -55.2 

 

3.1.4 Change from bushfire 
Modelling revealed a strong positive correlation between SOC and the number of years since 

bushfire. The influence of this variable was strongest when converted to the natural log format (ln) 

indicating its influence is more pronounced  in the early rather than later years. This reflects high 

rates of SOC recovery in early years then progressively lower rates of SOC recovery until a new 

equilibrium is reached. The results suggested a re-equilibrium was approached after 75 years. 

Figure 9 presents the modelled immediate loss of SOC (in relative terms) in the aftermath of a 

hypothetical bushfire across the entire eastern forest region. Losses of SOC generally range between 

40 and 60%, substantially high proportions. The recovery of SOC after 20 years is presented in Figure 

10 (in absolute terms), which accounts for a large amount of that originally lost.  

The highest rates of loss are indicated over locations with high initial SOC levels. These estimates of 

SOC decline following NSW bushfires derived from this modelling approach are in accord with other 

studies. Tulau et al. (2016) reported declines in the top 10 cm of approximately 35% SOC (in relative 

terms) in sandy soils and 55% SOC in moderately clay rich soils three years after high intensity fires in 

the Warrumbungles National Park of NSW in 2013. Similar trends have been demonstrated in other 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX A: Digital soil mapping project update reports 

11 

 

Australian and international studies (Bowd et al. 2019; Homann et al. 2011; Tessler et al. 2008; Tulau 

and McInnes-Clarke 2016), as graphically represented in Figure 11. 

 

 

Figure 9: Predicted immediate loss of SOC due to hypothetical bushfire across entire eastern forest area 

(relative %) 
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Figure 10: Predicted increase in SOC content 20 years after hypothetical bushfire across entire eastern forest 

area (main image: absolute %; inset image: relative%) 

 

Figure 11. Temporal changes in soil organic matter content following low and high fire severity (after Tessler et 

al. 2008 in Tulau and McInnes Clarke 2016) 
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3.2 pH 

3.2.1 Key drivers 
The relative influence of the various environmental and management variables on pH is presented in 

the variable importance plot of Figure 12, which gives the top ten variables and displaying direction 

of influence.  These results are complemented by the those presented in the table of MLR 

standardised regression coefficients given in Appendix 1. 

 

Figure 12: pH variable importance plot, 0-30 cm 

Parent material and soil type as represented by the silica index is revealed as the dominant driver 

over the eastern forest area. pH increases, ie, become more alkaline, with decreasing silica content 

of parent material, indicative of soils of higher clay content and fertility. Conversely, soils generally 

become more acidic with more siliceous, sandy soil (Gray et al. 2016b). Other parent material/soil 

variables such as radiometric K and Th, clay proportion and the weathering index also feature in the 

top 10 variables. 

Climatic factors are also revealed as key drivers of pH. Soils are shown to become more alkaline with 

decreasing rainfall and increasing temperatures. This results from the lower levels of leaching that 

allows basic cations to be retained in the soil and not replaced by hydrogen and aluminium ions 

(McKenzie et al. 2004; Rubinic et al. 2015).  The influence of projected climate change on pH is 

examined further in s.3.1.3. 

The modelling reveals that pH is negatively correlated with vegetation cover over the forest study 

area, ie, the higher the vegetation cover, the more acidic the soil. In mixed use landscapes this same 

trend is often apparent because the higher fertility more alkaline soils are used for more intensive 

agricultural purposes, which typically have lesser annual vegetation cover, but this explanation 

would not apply in this uniformly forested study area. It is likely that high vegetation cover is 

associated with release of organic acids.  It can be observed that the forest disturbance index (FDI) 

did not rank in the top ten variables. For this reason, the modelling of change between the relatively 

undisturbed condition to the current conditions produced no meaningful results and those results 

are not presented.   
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The results suggest higher pH, more alkaline soils with increasing slope gradients. This is contrary to 

the normal pedologic behaviour across the broader NSW, where the lower slopes and drainage 

basins accumulate basic cations which serve to raise pH.  The variable representing years since 

bushfire did not appear to have any influence on the soil pH.   

3.2.2 Change from climate change 
The change in pH arising from projected climate change over NSW has been modelled as part of the 

NARCliM program (Gray and Bishop 2018, 2019). Results from that project suggest a slight increase 

to more alkaline soils over the NSW forest area to the far change period, centred around 2070, as 

shown by Figures 13 and 14. The change by RFA region is presented in Table 5. The most 

pronounced increases are evident in the Southern region, particularly in the alpine regions, where 

increases of more than 0.3 pH units are predicted. The results represent the mean  of the 12 climate 

model projections applied in the NARCliM program. The magnitude of change in pH varied between 

the different climate models. 

Over most of the region the changes in pH are quite small and are not likely to significantly affect 

silvicultural practices. Any changes in soil pH may affect natural ecosystems, which have normally 

become established under particular pH ranges. Where significant increases or decreases (e.g. of 

0.25 pH units or more) are demonstrated there is a likelihood that native ecosystems will be 

affected; this is an issue that may need to be considered and addressed by managers of these 

ecosystems. 

 

Figure 13: Predicted change in pHca due to projected climate change to approx. 2070 

https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW
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Figure 14: Predicted change in pHca due to projected climate change to approx. 2070, Yarrowitch Region 

 

Table 5:  Mean absolute change in pH with climate change to approx. 2070 by RFA region (pH 

units) 

RFA Region 0-30 cm 30-100 cm 

Upper North East subregion 0.16 0.13 

Lower North East subregion 0.16 0.13 

Southern  0.27 0.26 

Eden  0.23 0.22 

 

 

3.3 Bulk density  

3.3.1 Key drivers 
The variable importance plot of Figure 15 presents the relative influence of the ten most significant 

environmental and management variables on bulk density over the 0-10 cm interval.  These results 

are complemented by the MLR standardised regression coefficients given in Appendix 1. The dataset 

upon which these results were based was not large (n= 52), so the results need to be treated with 

some caution. 
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Figure 15: Bulk density variable importance plot, 0-10 cm 

The results suggest that parent material/soil type indicators such as silica, radiometric K and clay 

type are dominant drivers of bulk density. This is particularly borne out by the standardised 

regression coefficient, which reveals silica index as more than double the next most significant 

variable. The positive correlation with silica reflects the higher bulk density typically associated with 

sandy soils and the lower bulk density in clay rich well-structured soils. 

Rainfall is demonstrated to be another dominant driver, and in fact is shown as the most influential 

factor in the above plot. It’s positive correlation may reflect the increased leaching of clays out of the 

soil under higher rainfall conditions, thus contributing to more sandy soils with their associated high 

bulk density. Temperature is also of moderate influence; the negative correlation possibly indicative 

of higher weathering and clay formation in warm moist conditions, thus driving bulk density lower.  

Vegetation cover and forest disturbance index (FDI) are both of moderate influence of bulk density, 

with negative and positive correlations respectively. These results reflect the rise in bulk density with 

lowering vegetation cover and increasing forest disturbance. Vegetation and organic matter serve to 

improve soil structure, and increased disturbance of soils from the higher FDI leads to soil 

compaction due to use of machinery and hard hooved stock animals, thus both variables contribute 

to the observed trends. The FDI is used as a basis for modelling the change with increased 

disturbance as presented in the following s.3.3.2. 

The variable representing years since bushfire did not appear to have any influence on soil bulk 

density. 

3.3.2 Change with disturbance 
Figures 16 and 17 presents the change in bulk density (0-10 cm) from hypothetical relatively 

undisturbed environment to present (approx. 2010), based on changes in FDI. All other variables 

were held constant, ie, no change in climate. 

A slight increase in bulk density, is revealed with this increase in disturbance. The increases range to 

over 0.2 t/ m3 or 15% in relative terms. Larger increases are, as expected, associated with the areas 
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of higher disturbance, as revealed by Table 6. There is zero change modelled over current formal or 

informal reserved lands, then slight increases (mean 7% in relative terms for 0-10 cm) over partially 

disturbed lands and highest increases (mean 14% in relative terms for 0-10 cm) over moderately 

disturbed, often grazed forest lands. 

  Table 6:  Mean relative change in bulk density with forest disturbance (%) 

Forest disturbance index 0-10 cm 10-30 cm 0-30 cm 

1:  Relatively undisturbed  0 0 0 

2:  Partial disturbance 6.8 6.1 8.1 

3:  Moderate disturbance (periodic grazing) 14.2 13.6 15.3 

 

These changes reflect the potential impacts of soil compaction from heavy machinery and stock, plus 

potential decrease in vegetation and SOC associated with the change from relatively undisturbed 

conditions to the current more disturbed forest environment. 

 

Figure 16: Change in bulk density from hypothetical relatively undisturbed  conditions to current condition, 0-

10 cm (main image: absolute %; inset image: relative%) 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX A: Digital soil mapping project update reports 

18 

 

 

Figure 17: Change in bulk density from  hypothetical relatively undisturbed  to current condition, Yarrowitch 

Region, 0-10 cm (t/m3) 

The change in bulk density due to human disturbance for each RFA region is presented in Table 7. It 

reveals the highest overall increases in the Upper and Lower North East regions. Increases are 

greatest in the surface soils. 

Table 7:  Mean relative change in bulk density with forest disturbance by RFA region (%) 

RFA Region 0-10 cm 10-30 cm 0-30 cm 

Upper North East subregion 8.3 7.6 9.7 

Lower North East subregion 6.7 5.9 8.0 

Southern  5.0 4.8 5.7 

Eden  5.7 5.3 6.5 

 

3.4 Extractable and total phosphorous 

3.4.1 Key drivers 
The variable importance plot of Figure 18 presents the relative influence of the ten most significant 

environmental and management variables on extractable P over the 0-30 cm interval.  These results 

are complemented by the  MLR standardised regression coefficients given in Appendix 1. The MLR 

and random forest models developed to explore extractable P were not strong, with maximum Lin’s 

concordance of 0.32 (0-30 cm interval), meaning the results do not have high certainty. 
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Figure 18: Pext variable importance plot, 0-30 cm 

The climatic variables of rainfall and temperature are revealed as the dominant controlling factors of 

extractable P in the forest environment. Values are shown to increase with decreasing rainfall and 

decreasing temperatures 

The parent material and soil indicators are prominent drivers of Pext, as represented by radiometric K 

and Th, plus clay composition and silica index. The negative direction of the silica variable reflects 

the higher values associated with mafic clay rich soils rather than siliceous sandy soils. Higher values 

are also revealed with more highly weathered soils through the weathering index.   

Pext, is shown to increase with more steeply sloping sites and lower vegetation cover sites. Forest 

management, as represented by FDI and years since bushfire did not have a significant influence on 

this property.  

Previously derived results for total phosphorus (Ptotal), from NSW wide analyses (OEH 2018) indicate 

a clear dominance of parent material/soil variables, particularly silica index, as a controlling driver. A 

clear increase with mafic, clay rich soils is again revealed.    

 

3.5 Dispersion percent (sodicity) 

3.5.1 Key drivers 
The relative influence of the various environmental and management variables on DP (sodicity) is 

presented in the variable importance plot of Figure 19, which gives the top ten variables and 

displaying direction of influence.  These results are complemented by the those presented in the 

table of MLR standardised regression coefficients given in Appendix 1. The MLR and random forest 

models were only weak to moderate strength, with maximum Lin’s concordance of 0.30 (0-30 cm 

interval), meaning the results do not have high certainty. 
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Figure 19: Dispersion percent variable importance plot, 0-30 cm 

The climatic variables of maximum temperature and rainfall are revealed as the dominant drivers of 

DP. Values are shown to increase with increasing temperatures and decreasing rainfall. This reflects 

the mobile nature of sodium, being easily leached from the soil under moist conditions. 

The parent material and soil indicators are prominent drivers of DP, particularly the silica index. The 

positive direction of the silica variable reflects sodium becoming more dominant relative to other 

major cations as soils become more siliceous. Additionally, because total cations are low in siliceous 

soils, even a small addition of sodium through airborne salts derived from the ocean, can result in a 

relatively large increase in DP.    

Vegetation cover and forest management are both revealed as significant drivers of DP. The 

property is revealed to increase with increasing vegetation cover, but also with increasing forest 

management disturbance. These somewhat contradictory trends suggest a complex relationship of 

DP and soil sodicity with forest management. 

The weak positive relationship with TWI, suggests higher DP and sodicity on lower parts of the 

landscape, in accord with accepted pedologic theory. The variable representing years since bushfire 

did not appear to have any influence on this property. 

 

3.6 Hillslope erosion 
Figures 20 and 21 present the relative change (in %) in erosion rate from a modelled baseline 

condition to modelled current condition. The individual maps representing the two conditions were 

described and presented in the previously submitted Baseline for Indicators Report. 
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Figure 20: Change in erosion rate between modelled baseline and current condition (%) 

 

Figure 21: Change in erosion rate between modelled baseline and current condition, Yarrowitch Region (%) 
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Figure 22 shows the mean annual hillslope erosion rate in the forested lands compared to all NSW 

from 2001 to 2020. On average, the hillslope erosion rate in the eastern forest area (3.3 t ha-1 yr-1) is 

about three time higher than the state average (1.0 t ha-1 yr-1). This can be explained by these three 

reasons: i) the forested lands are normally in steeper slopes with higher LS values; ii) most of the 

forested lands are located in eastern coasts where the rainfall amount and intensity are higher 

compared the state average; 3) there are frequent bushfires in the forested lands which reduced 

vegetation cover level (thus increased the C factor values).  

 

Figure 22: The mean annual hillslope erosion rate in the forested areas compared to all NSW from 2001 to 

2020 

Figure 23 further compares the annual hillslope erosion rates in the four major Regional Forest 

Agreement regions (RFAs) across NSW from 2001 to 2020. It shows that Lower North East RFA 

subregion has the highest hillslope erosion rate (5.4 t ha-1 yr-1), followed by Upper North East RFA  

subregion (4.0 t ha-1 yr-1), Southern FA (2.1 t ha-1 yr-1) and Eden FA (1.7 t ha-1 yr-1). There are also 

great seasonal and inter-annual variation in hillslope erosion. The maximum erosion rate was almost 

10 t ha-1 yr-1) in 2013 in Lower North East RFA subregion which was about 17 times higher than the 

lowest rate (0.6 t ha-1 yr-1) in 2009 in Eden RFA. Overall, the hillslope erosion rate in the eastern 

forest area is the highest in summer, especially in February (0.8 t ha-1 month-1) which is more than 10 

times higher than the winter (e.g. July) rate (<0.1 t ha-1 month-1) as shown on Figure 24. 
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Figure 23: The mean annual hillslope erosion rate in the four major forested areas across NSW from 2001 to 

2020.  

 

Figure 24: The mean monthly hillslope erosion rate in NSW forested areas during the period 2001-2020.  
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4 Discussion 
Digital soil mapping techniques have been used to provide data and insights into the drivers and 

trends of change of soil condition over eastern forests of NSW. A lack of existing long-term soil 

monitoring sites across the region means there is no empirical data to base results on at this stage. 

As a result, it has been necessary to rely on modelling outputs, based on existing historic soil data 

held by the NSW Government. 

DSM techniques allow us ‘data mine” the existing data to establish key relationships and trends. 

Such information may not be readily apparent when examining single isolated sites. However, 

limitations in the modelling process need to be recognised and the results interpreted with caution, 

as discussed in s.4.3 below. Nevertheless, the results certainly provide a useful overview of key 

drivers and trends. These can be improved upon with addition of reliable data from appropriately 

established monitoring program   

Data has been provided on six soil condition indicators, being SOC, pH, bulk density, phosphorous, 

sodicity (dispersion percent) and hillslope erosion. Together these provide a useful assessment of 

soil condition of forest soils. 

4.1 Summary of driving factors 
The status of soil indicators and their change are a product of various soil forming factors, climate, 

parent material, topography, biota and time, as recognised by early pioneering soil scientists 

Dokuchaev (1989) and Jenny (1941). Each of these soil forming factors can be represented by 

multiple sub factors. Biota includes all aspects of human influence and land management. The role 

of bushfire in this scheme is not immediately clear and could be considered as a sixth entirely new 

class of factor.  

The DSM techniques provide a useful approach for identifying key drivers of the component soil 

condition indicators. The combination of these broad factors is shown to vary for each indicator.      

Variable importance plots, as generated through the random forest modelling technique, provide 

useful visual representation of the relative influence of the different variables in the model. These 

results were complemented by standardised regression coefficients from multiple linear regression 

(given in Appendix), which importantly reveal the direction of influence of each variable. 

Climate and parent material/soil type  were revealed to be strong drivers for all indicators. 

Topographic factors were not revealed as strong drivers at the broad regional scale, but are likely to 

be more influential at a local scale. These environmental variables are broadly beyond the control of 

human influence.  

Forest management and the associated vegetation cover factors are demonstrated to be important 

drivers for most soil condition indicators.  They exerted particularly key roles for SOC and bulk 

density, allowing useful maps of their change with changing land management to be developed. 

SOC levels were revealed to decline with increasing disturbance from forestry harvest operations 

and uncontrolled stock grazing, and the associated reduction in vegetation cover.  Bulk density was 

shown to increase under those conditions, indicative of declining soil structure and soil condition. 

The forest disturbance index (FDI) as developed in this project, is a very broad indicator of 

management. Further insights will be gained when more detailed division of forest management 

operations are available and assessed, for example, considering the intensity and frequency of 

logging operations.   
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The number of years since bushfire was demonstrated to be a key driver of SOC, as further discussed 

below.  

4.2 Summary of trends 
This study applied a ‘space for time substitution’ process, where spatial patterns are substituted for 

temporal patterns (Pickett 1989; Blois et al. 2013).It was revealed that increased ground 

disturbance, as indicated by the FDI, results in decreasing SOC. The change of status from relatively 

undisturbed reserved lands to forestry harvest lands then to moderate disturbance (uncontrolled 

grazing by stock) results in progressively lower SOC values. These changes are typically also often 

associated with decline in vegetation cover, particularly where stock grazing occurs, which also 

contributing to SOC decline. 

The reverse trend was revealed for bulk density, where increasing forest disturbance resulted in a 

detrimental increase in this indicator, a trend also reported by Huang et al (1996). The disturbance 

from heavy vehicles and hard hooved stock results in compaction of soils. It is evident that the 

intensity of disturbance is associated with decline in soil condition. Managers of these forests should 

endeavour to minimise ground disturbance where possible in order to maintain soil condition.  

The influence of climate change on SOC and pH was examined by applying results from the recent 

NARCliM program (Gray and Bishop 2018, 2019). Trends of strong decline in SOC and slight rise in pH 

were revealed over the forest study area, however the magnitude of change varied between the 12 

different climate models applied in the NARCliM program.  The decline in SOC is indicative of a 

projected decline in soil condition and ecosystem health. Any significant change in soil pH, either rise 

or fall, can be detrimental to natural ecosystems that are adapted to particular pH ranges. A 

resulting degree of migration of ecosystems may be a slight consequence that reserve managers 

need to be aware of.  The pH change is unlikely to be a critical issue for forestry production over the 

times scales considered in this study.   

Bushfires are predicted to have a major influence on SOC, with a dramatic loss evident immediately 

following the bushfire, in the order of 50%, followed by a gradual recovery of content in the 

following years, approaching re-equilibrium levels after approximately 75 years. The influence of 

prescribed burning on SOC was not assessed in this study, but it should be examined in ongoing 

monitoring programs. 

4.3 Limitations 
The models upon which the driving factors and trends were based were typically not strong, as 

reported in the Baseline for Indicators Report (DPIE, submitted to NRC April 2021), with Lin’s 

concordance values generally in the range of 0.3 to 0.4. This means all results need to be treated 

with an element of caution. The estimates of change provided in the maps should not be relied upon 

at fine scale, but provide a useful first approximation 

As mentioned in Baseline report, the overall uniformity of environmental conditions over the region 

(ie, generally moist climate, infertile soils, steep terrain and high vegetation cover), means there is a 

lack of contrast in conditions that normally contribute to models of greater strength. There appears 

to be incomplete coverage of all required areas of key environmental space, ie, combinations of 

different environmental conditions, over the forest study area. These and other limitations were 

raised in the Baseline report, together with key references that further discuss potential 

uncertainties in digital soil modelling applications.  
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The analysis of many trends reported here relied on the space for time substitution modelling 

approach. This assumes patterns of variations in space can substitute for patterns of variations in 

time, which may not always be valid. 

At this stage there is insufficient reliable data to fully model the impacts from differing types and 

levels of forest disturbance. The FDI presented and applied in this study was a very coarse indicator 

that cannot reflect the subtle differences between various forms of forest management, eg, 

intensive or periodic selective logging. Similarly, broad assumptions had to made in relation to the 

bushfire analysis, with local variations in fire intensity from a recorded bushfire event not 

considered.  

These limitations will be partly addressed with the acquisition of more reliable data  from carefully 

selected and meaningful monitoring sites. This will allow more reliable analysis of trends from both 

digital modelling and conventional empirical analysis approaches. 

4.4 Combining indictors to single forest soil condition index 
The report has examined drivers and apparent trends in change of a number of separate indicators 

of forest soil condition. Each indicator has a different response to environmental and forest 

management factors and have differing trends projecting forward. 

Systems are currently being explored by DPIE to combine these indicators into a single soil condition 

index. Previously reported options as presented in the Literature Review Report (submitted to NRC 

October 2020) will be considered. 

An option being considered is to first normalise the extent of change from the relatively undisturbed 

soil for each separate indicator, for example by converting to relative change %. Then the average 

change of the indicators is derived, or perhaps the average of the three most significant changed 

indicators. From this a system of identifying the overall change in forest soil condition from the 

separate component indicators is derived. The results of change of the individual component 

indicators would also be presented in addition to the overall combined single index of forest soil 

condition. 

   

5 Conclusion 
This report has used digital soil mapping techniques to provide data and insights into the drivers and 

trends of change of soil condition over the RFA regions. The lack of existing long term soil monitoring 

sites across region means no empirical data was available to base results on at this stage, thus a 

modelling approach has been necessary. 

It was revealed that a change in forest management from relatively undisturbed reserved lands to 

partial disturbance (forestry harvest operations) then to moderate disturbance (uncontrolled grazing 

by stock) results in progressively lower SOC values and higher bulk density. Both these indicators 

point to a decline in forest soil condition under this increased level of disturbance.   

Projected climate change into the future is demonstrated to lead to a decline in SOC and rise in pH 

over the forest area and an overall decline in soil condition. Bushfire is predicted to have a severe 

impact on SOC and resulting soil condition. 
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A greater understanding of the driving factors of soil condition and ongoing trends into the future 

requires further data that can only be obtained with the establishment of a well designed forest soil 

monitoring program. This should be a priority for the NSW Forest Management Improvement Plan.  
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Table A1. Standardised regression coefficients from MLR models 

Soil forming  Variable Total OC    pH    Bulk density   

 factor  0-101   10-30 0-30 30-100 0-10  10-30 0-30 30-100 0-10  10-30 0-30 

Climate             
 Rainfall +0.27 +0.32 +0.27 +0.24 -0.15 -0.15 -0.16 -0.18 +0.38 -0.35 -0.01 
 Temp_max - 0.23 - 0.33 - 0.28 -0.12 +0.19 +0.11 +0.13 +0.07 -0.28 +0.13 +0.06 

Parent 
material/soil 

 
 

          

 Silica/lithology -0.16 -0.21 -0.19 -0.22 -0.27 -0.28 -0.29 -0.19 +0.89 +0.38 +0.60 
 Kaolin         -0.09    
 Illite +0.09 -0.06        +0.18 +0.31 
 Smectite     +0.04       
 Rad K -0.09  -0.08  +0.28 +0.24 +0.26 +0.18  +0.17  
 Rad Th +0.03   +0.07 -0.11 -0.11 -0.12 -0.15 -0.30   
 Rad U         +0.23   

Relief             
 Aspect index   +0.06 +0.07 0.06 +0.09 +0.09 +0.09  +0.21 +0.15 
 Slope +0.18 +0.17 +0.14 +0.15 +0.10 +0.11 +0.11 +0.08 +0.15   
 Topo wet index -0.02 -0.05 -0.04  +0.04 +0.04 +0.04 +0.07    

Biota             
 Forest_disturb_ 

index 
-0.15 -0.12 -0.14 -0.04     +0.35 +0.04 +0.11 

 Veg frac cover +0.10 +0.06 +0.09 +0.07 -0.12 -0.13 -0.14 -0.15 -0.18 +0.16 +0.09 

Age             
 Weathering 

index 
    -0.05    +0.42   

Fire             
 Years since fire +0.14 +0.13 +0.14         
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Soil forming     
factor 

Variable Pextractable     Dispersion Percent (DP)    EC 

  0-10  10-30 0-30 30-100 0-10  10-30 0-30 30-100 0-30 

Climate           
 Rainfall -0.07 -0.06 -0.08 -0.13 -0.13 -0.18 -0.17 -0.14 -0.03 
 Temp_max -0.10 -0.06 -0.09 +0.05 +0.21 +0.19 +0.23 +0.12 -0.01 

Parent 
material/soil 

          

 Silica/lithology -0.09 -0.14 -0.09 -0.15  +0.08 +0.05 +0.15 -0.13 
 Kaolin   +0.04 +0.05 +0.13  +0.08   +0.08 
 Illite     +0.06 +0.06 +0.09 +0.10 -0.09 
 Smectite     -0.09 -0.09 -0.09 -0.06  
 Rad K     +0.08 +0.17 +0.13 +0.07 -0.15 
 Rad Th -0.20 -0.27 -0.24 -0.30 +0.06  +0.05   
 Rad U +0.12 -0.20 +0.15 +0.17      

Relief           
 Aspect index  +0.13        
 Slope +0.14  +0.15  -0.04 -0.02 -0.06   
 Topo wet index       +0.03  +0.02 

Biota           
 Forest_disturb_ 

index 
  +0.04  +0.16 +0.15 +0.16 +0.12  

 Veg frac cover -0.08 -0.14 -0.11 -0.11 +0.14 +0.05 +0.08  -0.18 

Age           
 Weathering 

index 
+0.07  +0.07  -0.10  -0.10 -0.05 +0.10 

Fire           
 Years since fire     -0.07 -0.08 -0.07 -0.09  

1 Depth interval (cm) 
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Forest Monitoring and Improvement Program  
Project 4: Baselines, drivers and trends in soil health and stability  
DPIE (Science) and University of Sydney, 6 June 2021 

 

Final report:   

1 Introduction 
This report presents the final report of trend and drivers of soil health and stability. The report 
is outline as follows:  

▪ Methods  
▪ Results 
▪ Conclusion 

2 Methods 

2.1 Preprocessing and collation of data cube  

The primary indicator of soil health adopted for this project is soil organic carbon (SOC). We have 
identified and collated potential space-time predictors of this variable. Figure 1 gives an overview of 
the description of the datasets processed and collated into a data cube for modelling. The data cube 
consists of SOC measurements, the month and year of profile sampling, as well as the space, and space 
and time covariates associated with the soil profile locations.  

 

Table 1: Overview of data collated for modelling 

Data type Covariate Source Resolution Note 

Response Soil organic carbon (SOC) SALIS - 0-30 cm 

Spatial DEM, slope Geoscience 

Australia 

90 m  

 Topographic Wetness Index 

(TWI), 

Multi-resolution Valley 

Bottom Flatness (MrVBF) 

ASRIS 90 m  

 Gama-radiometric data 

• Potassium 

• Uranium 

• Thorium 

• Radiation dose 

SLGA 90 m  

 Silica Gray et al. (2016) ~100 m  

 Clay % (0-5)  SLGA  90 m    

Spatial and 

temporal 

Precipitation SILO 5 km, monthly   
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Data type Covariate Source Resolution Note 

 Temperature (min and max) SILO 5 km, daily  

 Solar radiation SILO 5 km, daily  

 NDVI LANDSAT 30 m, 16-day  

2.1.1 Data cube SOC 

The profiles data were obtained from the SALIS database. Figures 1-2 present data of where SOC has 
been measured in the Regional Forest Area and are based on all the datasets held by DPI-E.  Figures 1 
present their spatial distribution in RFA regions for different time slices. Figure 2 presents the same 
data but as number of observations per RFA region with different time slices. In broad terms the 
number and distribution of soil carbon measurements for each time slice is promising in terms of 
applying the data cube approach to the pre-2010 period.  An obvious issue is the lack of data for 2010 
onwards and any predictions for 2010 onwards are assuming pre-2010 vegetation and 
weather variation represents the 2010+ period where we are extrapolating in time.   

 

Figure 1. Spatial distribution of surface organic carbon measurements across RFA regions  
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Figure 2. Number of surface organic carbon measurements across RFA regions  

 

In modelling and mapping soil attribute from legacy data such as the one used in this project, certain 
known sources of variation like differences in depth characteristics of the soil profiles, as well as the 
use of different analytical methods between laboratories and survey campaigns need to be considered 
carefully. We dealt with depth variation by harmonising the SOC measurements at different depths to 
the reference standard depths specifications of the Global Soil Map consortium. We achieved this by 
applying a mass-preserving spline function (Bishop et al., 1999) and output the means at the standard 
depths. However, we aggregated the SOC measurements of the first three standard depths (0-5, 5-15 
and 15-30 cm) using a depth weighting function and subsequently adopted this for further analysis 
and reporting. Generally, over half of SOC stored in the top 100 cm of soil is in the top 30 cm (Batjes, 
1996) and this layer is impacted the most by human and natural disturbances. We also accounted for 
variation in SOC measurements arising from the differences in analytical methods by including a field 
in the data cube indicating what SOC analytical method was used. 

Additional SOC data was provided by the University of Sydney. This dataset was collated from a project 
on bushfire covering the period from 2015 to 2019 (Figure 3). Soil samples were collected at a depth 
of 0-10 cm from burnt and unburnt sites, totally 78 overall. Because of the limited number of 
observations in this dataset, it was not added to the data cube but was rather used as an independent 
test set to evaluate the space-time model. Only points (n = 23)that fall with the forest land cover and 
were in the RFA were used for this purpose. 
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Figure 3. University of Sydney bushfire research soil surveys 2015-2019  

 

2.1.2 Covariates 

Potential covariates for SOC prediction consisted of data that vary in space and those that vary in both 
space and time (Table 1). All time-varying covariates (NDVI and climate variables) were aggregated to 
monthly values. Since the effect of these covariates on soil health dynamics depends on current and 
past conditions, we applied a decay function weighting algorithm (Figure 4) to aggregate sixty months 
(5 years) of the covariate timeseries prior to when the soil profile was sampled. The algorithm attaches 
more weight to the most recent observations. Feature extraction by this method instead of taking the 
mean value over the last 5 years has been shown to create better predictive models (Wimalathunge 
& Bishop, 2019) 
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Figure 4: Exponential decay function used to weight the time -varying covariates over prior months to soil profile 

sampling date. 

 

Another key feature of the data cube is the incorporation of the proxy for natural and anthropogenic 
disturbances of SOC dynamics at the time of soil profile sampling compared to conditions at discrete 
times in the past. The potential effect of these disturbances is represented in the data cube by 
incorporating NDVI difference features wherein the NDVI of the previous 1, 2, 3, 6, and 12 months are 
subtracted from the NDVI of the month of profile sampling. For example, if there was a fire 2 months 
ago, we would expect there would be a drop in NDVI between the NDVI today and 3 months ago. This 
could be useful in situations where we don’t have fire or logging spatial data. 

While most of the pre-processing and extraction was done in R, a large portion of the NDVI preparation 
was done in Google Earth Engine (GEE). This is more efficient and circumvents the need of 
downloading relatively large amount of Landsat scenes, thus freeing up local storage space. The GEE 
Java scripts used for the NDVI extraction are available and can be to be used to extract NDVI data. 

2.2 Modelling and prediction of SOC 

2.2.1 Data preparation 

Prior to modelling, some initial data preparation steps were carried out. First, data used for modelling 
was restricted to profiles sampled from the forest landcover class within the RFA. We used the binary 
landcover forest extent layer of 2008 to extract forest soil profiles. Second, we only retained SOC 
measurements with values between 0.1 and 15 %, as SOC values below this range are not reliable and 
values above this range are mostly organic soils which are underrepresented in the region and are 
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difficult to incorporate into models (Gray et al., 2015). In addition some covariates did not completely 
cover the study area, the main example being the gamma radiometrics survey data.  Figure 5 shows 
the distribution of profiles with complete and incomplete cases. 

 

 

Figure 5: Soil profile distributions with complete and missing covariate observations 

 

2.2.2 Feature selection, modelling and prediction 

The data for modelling was partitioned into training and testing sets using a 80:20 stratified random 
split based on year of sampling. Prior to modelling, a recursive feature elimination algorithm (RFE) 
(Guyon et al., 2002) was used to select covariates. 

Using the selected covariates and the training dataset, a final model was calibrated using quantile 
regression forest (QRF). Calibration involved the tuning of the number of predictors sampled for 
splitting at each node (mtry) of the RF model using a 10-fold cross-validation approach. The 10-fold 
cross-validation involves calibrating a model on all but a fold of the training set and validating it on 
the excluded fold. This is repeated until every fold is used nine times for calibration and once for 
validation. Out of the three values evaluated for the mtry hyperparameter (2, 8 and 15), 5 was 
determined to be optimal and used to build the final model.  

Model performance was evaluated on both the training and test sets. Comparison between observed 
and predicted SOC was done using the following metrics: root mean square error (RMSE), and the Lin’s 
concordance correlation coefficient (LCCC). LCCC measures the level of agreement between the 
predicted values with the observed values, relative to the 1:1 line, and the RMSE measures the 
accuracy of the model.  
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The estimated model was then used on a stack of regular grid of covariates to predict monthly SOC 
from January 1990 to December 2021. Since the model was built using QRF, it is possible to make 
prediction for different quantiles. Therefore, SOC predictions were made for the 0.5-quantile (median) 
and the 0.05- and 0.95-quantiles as the lower and upper bounds of a 90% prediction interval. The 
0.95-quantile SOC prediction can be used as an indicator of the carbon sequestration potential of the 
soil. The monthly maps of the median SOC were spatially aggregated for the RFAs and the forest 
disturbance index (FDI, management regimes) to form a temporal timeseries of SOC. For brevity, the 
monthly values were further averaged to yearly values and then plotted to show the temporal SOC 
trends. It was not plausible to derive the uncertainty (e.g., 0.05- and 0.95-quantiles) of the spatial 
aggregates as this requires modelling the spatial autocorrelation of prediction errors (Heuvelink et al., 
2020), which is not estimated with QRF. Finally, we created a video animation for 2015 to 2020 
monthly SOC maps for the Wauchope area where the NRC forest health project had some 
experimental plots. This is highlight how the modelling approach could be visualised. 

3 Result 

3.1 Model selection 

Result of the RFE showed the optimal number of covariates to be 15 (Figure 6) out of the 37 originally 
fed to the algorithm. Adding more covariates did not lead to any significant further decrease in RMSE. 
While the RFE algorithm retained four soil and terrain space covariates, the remaining were vegetation 
and climate space-time attributes (Figure 7). In terms of the importance of the selected covariates in 
the final model, the space-time covariates (i.e., vegetation and climate attributes) ranked higher than 
the space covariates (i.e., terrain and soil attributes). Generally, NDVI was ranked as the important 
covariate (ranked between 1 to 6) and clay was ranked the least, with no contribution to the model 
(Figure 7). Elevation was the highest ranked variable among the soil and terrain covariates (ranked 9). 
All five exponential decay parameter values were important for NDVI, indicating that substantial 
temporal smoothing of the variable was used in SOC prediction. 

  

Figure 6: Root mean square error (RMSE) for different subset of covariates included in the random forest model 
as derived with the RFE. 
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Figure 7: Variable of importance for the 0-30 cm SOC model 

 

3.2 Model evaluation 

Evaluation of the prediction model on both the training and test data indicate a reasonable 
performance, although the model performed better on the training than on the test set (Figure 8). 
The predicted SOC has less variation than the actual observations. This is not uncommon with 
empirical prediction methods.   

The model, however, performed poorly on the independent dataset obtained from the Uni Sydney 
(Figure 9). It should be noted that the independent data was quite localised and from an epoch (2015-
2019) where there were few soil carbon observations on which to train the model.  Thus this gives 
and indication of the quality of the model when extrapolating to time periods when there is few data 
(post-2010) as compared to validation set which gives an indication of the model quality when 
applying it to periods when there are more observations (pre-2010).  It should also be noted that the 
data was collected from 0-10 cm whereas our modelling was performed on 0-30 cm which is another 
source of error. 
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Figure 8: Scatterplot of predicted against observed 0-30 cm soil organic carbon (SOC) based on model evaluated 
on the (A) training and (B) test data. Diagonal line is the 1:1 line; LCCC, Lin’s concordance correlation coefficient; 
RMSE, root mean square error  

 

 

Figure 9: Scatterplot of predicted against observed 0-10 cm soil organic carbon (SOC) based on model evaluated 
on independent data from the University of Sydney. Diagonal line is the 1:1 line; LCCC, Lin’s concordance 
correlation coefficient; RMSE, root mean square error  

 

3.3 Predicted SOC maps 

Figure 10 shows the predicted 0-30 cm SOC maps for the month of June 1990, 2000, 2010 and 2020. 
While the temporal trend is not generally apparent from the maps, the relative difference between 
the SOC for 2020 relative to those of 1990, 2000 and 2010 show substantial changes in SOC (Figure 
11).  Generally, it would appear that there is a substantial decline in SOC in 2020 compared to 1990 
levels across large areas of the RFA. An animated GIF of the monthly time series of SOC for a subset 
within the RFA is shown in Figure 12. However, the trends are far from significant as Figure 13 presents 
the lower and upper 90% prediction interval for 2020 and it is clear that all previous estimates for 
each year fall within these bounds.  Therefore, while we see a trend of decline we are highly uncertain 
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that it is true and may never know as there has been such sparse measurement of soil carbon in the 
RFA regions since 2010. 

 

 

Figure 10: Predicted 0-30 cm SOC in the forest of the RFA 

 

 



Determining baselines, drivers and trends of soil health and stability in New South Wales forests 

APPENDIX B: Data cube project report 

43 

 

 

Figure 11: Change in predicted 0-30 cm SOC in 2020 relative to years 1990, 2000 and 2010 

  

Figure 12: Animation of monthly SOC from 2015 to 2020 (left) in the Wauchope area. The map to the right shows 
the area on a base map for context. 

The difference between the 0.05- and 0.95-quantile maps in Figure 13 indicates a wide 90% prediction 
interval, which is in agreement with the RMSE in Figure 7.  

 

Figure 13: Maps of the 0.05-, 0.5- and 0.95-quantiles of the 0-30 cm SOC for June 2020 
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3.4 SOC time series 

Figures 14 shows the time series of spatially and temporally aggregated monthly SOC in the RFA areas 
and the management regimes from 1990 to 2020. Although the overall trend in SOC is positive for 
both the RFAs and the management regimes, segments in the time series show a downward trend. Of 
particularly note is the downward trend in SOC since 2017.  

Interestingly, the predicted SOC under different management regimes show SOC levels are inversely 
related to the degree of disturbance in the area, with the SOC higher in protected areas and least in 
unprotected areas. 

Once again we are only plotting trends based on our predictions which have some uncertainty and 
while predictions over regions are generally more precise (Bishop et al., 2015) we would expect these 
would be non-significant in statistical sense.  
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Figure 14: Yearly predicted 0-30 cm SOC (%) spatially averaged for the forests of the RFAs (top) and the 
management regimes (bottom)  

Spatial and temporal average of predicted monthly SOC (%) in forest management regimes of the RFAs 
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4 Discussion & Conclusions 

We have developed a workflow and implemented a prototype model for forest soil SOC in the RFA.  
The main issue is the data sparsity in the post-2010 period but further investment in sampling in the 
coming years is likely to improve the model predictions overall and for this period in particular.  
Recently Meyer & Pebesema (2021) published the concept of area of applicability (AOA) which 
examines the multivariate attribute space where samples are taken relative to the entire grid of 
prediction locations.  This is to define the AOA for a model in a spatial context, i.e. where the 
predictions could be useful.  Future work could extend this concept to space and time to examine how 
well we have sampled the multivariate attribute space of the data cube and for each time period 
produce an area of applicability map.   

One further source of improvement is use of prediction methods that account for the spatial and 
temporal auto-correlation of the observations and offer an interpolation component when predicting.  
We present some exploratory results on this in the Appendix where we use Gaussian Process 
Regression (GPR).  The method holds promise but due to data sparsity, accounting for the spatial and 
temporal auto-correlation did not improve the predictions and added unnecessary complexity.  This 
approach has the approach has the advantage of being able to be used to predict at different spatial 
supports with a plausible uncertainty estimate allowing better testing of trends through time for RFA 
regions or other spatial units.   

Given the major limitation of the work was the lack of soil observations the main recommendation 
beyond extra sampling effort is to expand the study domain to all of NSW as this will increase the 
number of observations available.  This will help the model learn relationships between covariates 
and will bring into play superior methods such as GPRs. 

5 Scripts 

A GitHub repository (https://github.sydney.edu.au/informatics/PIPE-1663-Forest-Soil-Carbon) 
describes all of the code used to generate the data cube and perform the analysis.   
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7 Appendices 

 

Appendix 1: Difference maps for predicted 0-30 cm SOC in the forest of the RFA for the year 2020 relative to  
1990, 2000 and 2010. 
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A Probabilistic Machine Learning Framework for Spatial-Temporal 

Mapping of Soil Carbon 
Sebastian Haan, Sydney Informatics Hub 

Summary 

Here we propose a probabilistic framework that transforms sparse soil measurements and other surface 
measurements into predictive carbon maps and their uncertainty. The spatial-temporal predictions are 
performed via Gaussian Processes (GP) with custom kernel to take into account spatial-temporal 
correlations and complex multi-variate mean function options that depend on additional covariates 
(e.g. terrain, vegetation, top soil properties). 

Some of the main advantages and features of this method are: 

• Generation of predictive maps (including uncertainty maps and covariances) at any scale, 
resolution, or time. 

• Consideration of heteroscedatic input uncertainties via modified GP kernel: 

– positional and temporal uncertainties of measurements 

– soil carbon measurement uncertainties 

• Input: sparse carbon soil measurements plus surface measurements of multiple covariates (DEM, 
Temperature, NDVI, Slope etc). 

• Output data: Soil Carbon plus their uncertainties as spatial maps at any future time; possible 
output format options are: 

– Point estimates (as voxels or cells in Cube) 

– Volume integration (averaging prediction and uncertainties over spatial area blocks and 
time periods) while taking into account predicted point covariances 

– Field (statistical averaging over custom areas as specified in polygon shapefiles) 

• Output maps: 

– Prediction maps 

– Uncertainty maps 

• Multiple options for covariate-dependent mean function of GP: 

– Bayesian Linear Regression 

– Bayesian Neural Networks 

– XGBoost 

– Random Forest 

• Global GP hyperparameter optimisation 

• Gaussian Process kernels with sparse spatial-temporal kernels and cholesky decomposition 

Other Features: 

• Multi-model calculation of Feature Importance (Random Forest, Bayesian Linear Regression, 
XGBoost, Bayesian Neural Network) 

• X-fold cross-validation and Model Prediction plus Uncertainty Evaluation 

• Model export and transfer functions for prediction or testing on other areas 

• Prediction of spatial covarariance (e.g., for spatial integration) 
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• Export format options: 

– csv tables 

– geolocation-referenced tiff 

– shapefiles (as polygons for custom areas) 

– images with custom color schemes 

Introduction to Gaussian Processes 

GPs are a flexible, probabilistic approach using kernel functions with non-parametric priors, and are 
successfully used in a large range of machine learning problems (see Rasmussen and Williams 2006 for 
more details). Some of the important advantages of the GP method are that it generates a predictive 
distribution with a mean and variance for each prediction point and that the GP marginal likelihood 
function is well defined by the values of their hyper-parameters, which allows it to optimise them 
exactly. This reasoning about functions under uncertainty and their well-tuned interpolation character 
allows GPs to work extremely well for sparse data as well as for big data (see (Melkumyan and Ramos 
2009) for solving large covariance matrix). 

A GP 𝑓(𝐱) ∼ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) is completely determined by its mean function 𝑚(𝐱) = E[𝑓(𝐱)] and 

covariance 𝑘(𝐱, 𝐱′) = E[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) −𝑚(𝐱′))], essentially placing a multivariate Gaussian 

distribution over the space of functions that map the input to the output, or informally, to measure the 
similarity between points as function of, e.g., their distance (the kernel function) and to predict a Gaussian 
distribution over 𝑓(𝑥∗) (i.e., a mean value and variance) at any new sampling location (unseen point) 𝑥∗ 
from training data. Here we propose a custom sparse covariance function 𝐊 with a spatial-temporal kernel 
with three correlation lengthscales (x,y,t). Hyperparameters of the GP are optimised using a global 
optimisation algorithm. 

Mean functions 

If the mean function is not zero but given by a predictive deterministic function 𝑚𝜙 = 𝑓(𝐱𝐜), the 

predicted GP posterior distribution is given by 

𝑦′|𝐆, 𝐲 ∼ 𝒩(𝑚𝜙′ + 𝐊𝑥,𝑥′
𝑇 𝐊𝑥,𝑥

−1𝐲 −𝐦𝛟, 𝐊𝑥′,𝑥′ + 𝜎𝑠
2𝐼 − 𝐊𝑥,𝑥′

𝑇 𝐊𝑥,𝑥
−1𝐊𝑥,𝑥′) 

The covariates 𝑥𝑐 are mostly surface measurements such as DEM, terrain slope, NDVIs, radioactivity, 
temperature, precipitation, and soil properties (clay, silica). 

Bayesian Linear Regression 

First, we standardise the data and apply a featurewise power transform scaler via scikit-learn 
implementation (default option). Power transforms are a family of parametric, monotonic 
transformations that are applied to make data more like a normal distribution. This is useful for 
modeling issues related to heteroscedasticity (non-constant variance), or other situations where 
normality is desired. In detail, the Yeo-Johnson transform (Yeo and Johnson 2000) is applied, which 
supports both positive or negative data. Note that the Bayesian Regression implementation in MLsoil is 
not limited only to power transform scaler but includes multiple options of scalers, such as 
StandardScaler or RobustScaler. After the featurewise scaling of data, a Bayesian ridge regression is 
performed using the algorithm described in Appendix A of Tipping (2001) where updates of the 
regularization parameters are done (MacKay 1992). To make the regression more robust, we add an 
automated feature selection after the initial regression by selecting only features with a ratio of 
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correlation coefficient to standard deviation larger than two. Then a second BayesianRidge regression is 
made using only the selected features, and the model and coefficients are stored with non-significant 
coefficients set to zero. Predictions and their uncertainties are then obtained by using the trained model 
and are scaled back with the powerlaw transform, F. 

Probabilistic Neural Network 

The probabilistic neural network is implemented by building a custom tensorflow probability model with 
automatic feature selection for sparsity. This method requires a feature-wise standard scaler. 

XGBoost 

Here, the XGBoost eXtreme Gradient Boosting implementation of https://github.com/dmlc/xgboost is 
applied. No data data scaling is required. For more implementation details and hyper parameter settings 
see xtree.py 

Random Forest 

The scikit-learn Radom Forest model implementation is applied. No data scaler required. Prediction 
uncertainties are currently estimates by using the standard deviation and Confidence Intervals of all 
decision trees. For more implementation details and hyper parameter settings see rf.py 

Case study - Soil carbon forest 
Data Overview 

The proposed probabilistic framework is tested for a region of 140 times 140 km (Latitude: -33.0 to -
31.48, Longitude: 151.45 to 152.9) with data that is marked as forest land-cover. The data spans a range 
of 18 years from 1990 to 2008. To take into account spatial temporal correlations, the data coordinates 
are projected into Cartesian coordinates for MGA Zone 56 and time-stamps are converted into days 
starting at 1990. An overview map is shown in Figure 1. 
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Figure 1. Map of the entire dataset and zoomed the selected region for testing.  

Preliminary Results on Subset of Soil Forest 
Feature Importance 

Feature importance can be determined using multiple models such as Bayesian Linear Regression (see as 
example Fig 2), Bayesian Neural Networks, XGBoost feature importance scores, or via permutation 
importance using Random Forests. 
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Figure 2. Feature Importance based on statistical significance of correlation coefficients of a Bayesian Linear 
Regression model.  

Cross-Validation 

Cross-validation is not only an important test to measure the accuracy of the trained model (e.g., via R2 
or RMSE) but also to verify if predicted uncertainties are consistent with errors of the test data. The 
residual analysis is performed on the validation data with a split in train/validation ratio of 90/10 and 

10-fold cross validation. The residual error 𝑅𝐸 = 𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑔𝑟𝑜𝑢𝑛𝑑 is defined as the predicted value 

minus the ground truth for each data point in the validation set. To test whether the predicted 
uncertainties are consistent with the residual error of the prediction, we can calculate the ratio 

𝜃 =
𝑅𝐸2

𝜎𝑌𝑝𝑟𝑒𝑑
2  

The figures below show the best and the worst models in terms of RMSE of a 10 fold cross-validation set 
using Gaussian Process Model with a Random Forest Mean Function model. For the tested region no 
significant improvement for the test data is found by adding the Gaussian Process to the mean function. 
This indicates that there is no significant spatial-temporal correlation for this specific dataset, most likely 
due to the fact that measurements over time are relatively segregated (see Figure 1). 
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Figure 3. Random Forest best result out of 10 fold-cross-validation. 
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Figure 4. Gaussian Process plus Random Forest best result out of 10 fold-cross-validation. 
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Figure 5. Random Forest worst result out of 10 fold-cross-validation. 
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Figure 6. Gaussian Process plus Random Forest worst result out of 10 fold-cross-validation. 
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Figure 7. Distribution of the residual error and theta for the aggregated cross-validation test sets. 
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Prediction Map 

 

Figure 8. Soil Carbon Prediction and Uncertainty Map for 1991 based on Gaussian Process Model with a Random 
Forest as mean function.  
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