

Suit 1A, Level 2, 2 Rowe St, Eastwood NSW 2122

P: 02 9807 7800 E: admin@quantumengineers.com.au

quantumengineers.com.au

Our Reference: 190210

No.56 BEANE STREET, GOSFORD

Water Cycle Management Report/Strategy

Prepared by:Jason Li BE(Civil) Checked by: Robert Eltobbagi BE(Civil) MIEAust CPEng Dated 16th December 2019

REVISION A – DA SUBMISSION

<u>Contents</u>

1 EXECUTIVE SUMMARY	3
2 EXISTING SITE CONDITIONS	4
3 PROPOSED DEVELOPMENT	5
4 OVERLAND FLOW AND FLOODING	6
5 WATER SAVING TARGETS	6
6 RAINWATER RETENTION REQUIREMENTS	7
7 ON-SITE DETENTION TARGETS	7
8 STORMWATER QUALITY TARGETS	10
9 OPERATION & MAINTENANCE	11
Appendix A	12

1 EXECUTIVE SUMMARY

As specified in Gosford City Council DCP 2013 Chapter 6.7- Water Cycle Management", all developments are required to produce a Water Cycle Management Report.

The purpose of this report is to minimise the impact of development on the natural predeveloped water cycle. This will lead to more sustainable outcomes that will protect the environment.

The following items will be addressed in the Report:

- Overland Flow & Flooding;
- Water saving targets;
- Retention targets;
- On-Site Detention targets;
- Stormwater Quality targets;.

2 EXISTING SITE CONDITIONS

- No.56 Beane Street, Gosford (lot 30 DP 125097)
- Subject Site is Zoned R1 general residential.
- Site falls to the North West.
- Existing council pit/pipe system located at western side of site on Beane Street.

Refer Survey Plan below

Figure 1 Survey Plan

3 PROPOSED DEVELOPMENT

Residential flat building comprising of 41 units over 7 storeys including two levels of basement carpark. The existing carpark are to be demolished to accommodate the proposed development.

4 OVERLAND FLOW AND FLOODING

The site is affected by overland flooding from the local upstream catchment. The runoff from the localised upstream catchment traverses overland through the low-lying areas of the catchment until it reaches Beane Street.

The proposed development and driveway entry have been lifted to prevent flood water entering the site. The future footpath on Beane Street will be grading from the boundary levels towards street kerb to prevent flood water entering the building. On-Site detention has been introduced to limit the flow of water during peak storm events and reduce flooding to downstream properties.

Figure 4 1% AEP Flood Level & Flood Depth – Post Development

5 WATER SAVING TARGETS

Proposed development to be in accordance with BASIX requirements including:

- 4 star toilet flushing systems
- 3 star shower heads
- 4 star kitchen taps
- 5 star bathroom taps
- 32,850L rainwater tank
- Rainwater used for toilet flushing, washing machine, irrigation & car washing.

6 RAINWATER RETENTION REQUIREMENTS

Gosford Council 'deemed to comply' stormwater retention volume targets based on Table 2 of the Water Cycle Management Policy provides the following volumes:

	V = Stormwater retention volume A = total site area (1283.2m²) F = 80% Fraction impervious (1026.4m²)
Therefore,	V = 0.01 x A x (0.02F) ² V = 32.85m ³

Therefore, the Total Stormwater Retention Volume = 32.85m³

Rainwater Re-Use shall be used for toilet flushing, washing machine, irrigation & car washing.

7 ON-SITE DETENTION TARGETS

On-Site Detention (OSD) has been provided to limit post development flows to less than pre-development (greenfield) flows for storm events ranging from 1:5yr to 1:100yr ARI.

Refer following DRAINS data and summary sheet

PSD COMPUTATION SUMMARY					
LGA:	CENTRAL COASTE COUNCIL				
DURATION: 100 YEAR ARI	PRE-DEVELOPMENT FLOW:	0.0470	m ³ /s		
	POST-DEVELOPMENT BY-PASS FLOW:	0.0200	m ³ /s		
	Hence, PERMISSIBLE SITE DISCHARGE:	27.00	L/s		
	DRAINS' MODELLING - resulting discharge rate	20.00	L/s		
DURATION: 50 YEAR ARI	PRE-DEVELOPMENT FLOW:	0.0410	m³/s		
	POST-DEVELOPMENT BY-PASS FLOW:	0.0180	m ³ /s		
	Hence, PERMISSIBLE SITE DISCHARGE:	23.00	L/s		
	DRAINS' MODELLING - resulting discharge rate	18.00	L/s		
DURATION: 20 YEAR ARI	PRE-DEVELOPMENT FLOW:	0.0360	m ³ /s		
	POST-DEVELOPMENT BY-PASS FLOW:	0.0160	m ³ /s		
	20.00	L/s			
	DRAINS' MODELLING - resulting discharge rate	17.00	L/s		
DURATION: 10 YEAR ARI	PRE-DEVELOPMENT FLOW:	0.0300	m ³ /s		
	POST-DEVELOPMENT BY-PASS FLOW:	0.0130	m ³ /s		
	Hence, PERMISSIBLE SITE DISCHARGE:	17.00	L/s		
	DRAINS' MODELLING - resulting discharge rate	16.00	L/s		
			2		
DURATION: 5 YEAR ARI	PRE-DEVELOPMENT FLOW:	0.0250	m ³ /s		
	POST-DEVELOPMENT BY-PASS FLOW:	0.0110	m ³ /s		
	Hence, PERMISSIBLE SITE DISCHARGE:	14.00	L/s		
	DRAINS' MODELLING - resulting discharge rate	14.00	L/s		
	HENCE, OSD REQUIRED VOLUME =29.7m3/s				
and					
Orifice Diameter = 92mmdia					

'DRAINS' LAYOUT

"DRAINS" MODEL (10% AEP)

"DRAINS" MODEL (2% AEP)

"DRAINS" MODEL (1% AEP)

8 STORMWATER QUALITY TARGETS

Water Quality improvement measures are required to improve the quality of stormwater runoff, which will also improve the health of creeks/waterways and enhance urban amenity.

The proposed development achieves the minimum reductions in total pollutant load listed below:

- 80% reduction in solids- Suspended solids & gross pollutants
- 45% reduction in nutrients- total phosphorus & total nitrogen

The following Water Sensitive Urban design (WSUD) measures are proposed for the subject site:

- 2 x Tall(690) PSorb cartridge StormFilter system within a 2.0m² StormFilter chamber, inside an OSD (refer to detail in Appendix A)
- 1 x OceanGuard with 200micron mesh bags (OG-200) for the driveway area only.
- 1 x OceanGuard with 200micron mesh bags (OG-200) for bypass landscape and bypass paved ground areas (refer to detail in Appendix A)

MUSIC Modelling

The Water Quality modelling for the proposed development was undertaken using MUSIC v6.3.0.

MUSIC (Model for Urban Stormwater Improvement Conceptualisation) was developed by the Co-operative Research Centre (CRC) for Catchment Hydrology and is designed to evaluate conceptual stormwater treatment designs by simulating the performance of stormwater quality improvement measures and comparing with water quality targets.

The adopted MUSIC parameters were as follows:

- Rainfall Station 059040 Coffs Harbour MO, 6 Minute Time Step From 1999 to 2003
- Water by Design's MUSIC Modelling Guidelines Version 1.0 2010 utilizing modified % impervious area, rainfall threshold, soil properties & pollutant concentration
- No drainage routing between nodes.

MUSIC modelling results are presented in the following Image.

9 OPERATION & MAINTENANCE

The primary purpose of the media filtration system is to filter out and prevent pollutants from entering our waterways. Like any effective filtration system, these pollutants must be periodically removed to restore the system to its full efficiency and effectiveness.

Maintenance requirements and frequency are dependent on the pollutant load characteristics of each site.

Maintenance activities may be required in the event of a chemical spill or due to excessive sediment loading from site erosion or extreme storms. Similarly, the system should be inspected after major storm events. Ocean Protect selects easy-to-access treatment systems that have been designed for minimal maintenance. However regular cleaning and device maintenance are necessary to remove pollutants and ensure the proper performance of your stormwater management system and compliance with the local regulations.

Recommended maintenance:

- StormFilter 12 months
- OceanGuard 4 months

Appendix A

- MUSIC link Report
- Ocean Protect Specification Drawings

music@link

MUSIC-link Report

Project Details		Company D	etails
Project: Report Export Date: Catchment Name: Catchment Area:	13624 - 56-58 Beane St, Gosford (Cnr Gertrude) 3/12/2019 13624 - 56-58 Beane St 0.128ha 72.65625%	Company: Contact: Address: Phone: Email:	QUANTUMENGINEERS Jason Li Suite 1A, Level 2, 2 Rowe Street, Eastwood NSW 2122 p: 02 9807 7800 jason.J@quantumengineers.com.au
Rainfall Station: Modelling Time-step: Modelling Period: Mean Annual Rainfall: Evapotranspiration: MUSIC Version: MUSIC-link data	66062 SYDNEY 6 Mnutes 1/01/1974 - 31/12/1993 11:54:00 PM 1297mm 1261mm 6.3.0		
Version: Study Area: Scenario:	6.32 Upland Central Coast Development		

* takes into account area from all source nodes that link to the chosen reporting node, excluding import Data Nodes

Treatment Train Effectiven	ess	Treatment Nodes		Source Nodes	
Node: Receiving Node	Reduction	Node Type	Number	Node Type	Number
Row	18.8%	Sedimentation Basin Node	1	Urban Source Node	6
TSS	82.2%	Rain Water Tank Node	1		
TP	61.7%	Generic Node	1		
TN	54.2%	GPT Node	2		
œ	100%				

Comments

- GPT reflects Ocean Protect's OceanGuard and has the correct values.

- The 'SF Chamber' detention node (sedimentation basin) has been modified to represent a tank to hold volume for use with the Ocean Protect filter. k values has been set to 1 to prevent the tank from "treating" the flow as it would within a grassed above ground OSD.

- The 'Generic Node' represents Ocean Protect's Stormfilter Cartridge and has the correct values.

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

music@link

Passing Parameters

Node Type	Node Name	Parameter	Min	Max	Actual
GPT	1 x OceanGuard 200	Hi-flow bypass rate (cum/sec)	None	99	0.02
GPT	1 x OceanGuard 200	Hi-flow bypass rate (cum/sec)	None	99	0.02
Receiving	Receiving Node	% Load Reduction	None	None	18.8
Receiving	Receiving Node	GP % Load Reduction	90	None	100
Receiving	Receiving Node	TN % Load Reduction	45	None	54.2
Receiving	Receiving Node	TP % Load Reduction	45	None	61.7
Receiving	Receiving Node	TSS % Load Reduction	80	None	82.2
Sedimentation	SF Chamber 2.0m	Exfiltration Rate (mm/hr)	0	0	0
Sedimentation	SF Chamber 2.0m	Extended detention depth (m)	0.25	1	0.77
Sedimentation	SF Chamber 2.0m	High Flow Bypass Out (ML/yr)	None	None	0
Urban	Bypass Landscape - 288m (100% Perv.)	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Bypass Landscape - 288m (100% Perv.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Bypass Landscape - 288m (100% Perv.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Bypass Landscape - 288m (100% Perv.)	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Bypass Landscape - 288m (100% Perv.)	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Bypass Landscape - 288m (100% Perv.)	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Bypass Paved Ground - 70m� (100% Imp.)	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Driveway - 71m (100% Imp.)	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Driveway - 71m (100% Imp.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Driveway - 71m (100% Imp.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Driveway - 71m (100% Imp.)	Stormflow Total Nitrogen Mean (log mg/L)	0.34	0.34	0.34
Urban	Driveway - 71m (100% Imp.)	Stormflow Total Phosphorus Mean (log mg/L)	-0.3	-0.3	-0.3
Urban	Driveway-71m (100% lmp.)	Stormflow Total Suspended Solids Mean (log mg/L)	2.43	2.43	2.43
Urban	Landscape to SF - 63m (100% Perv.)	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Landscape to SF - 63m (100% Perv.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Landscape to SF - 63m (100% Perv.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Landscape to SF - 63m (100% Perv.)	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Landscape to SF - 63m (100% Perv.)	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Landscape to SF - 63m (100% Perv.)	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Paved ground to SF - 121m (100% Imp.)	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Paved ground to SF - 121m (100% Imp.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Paved ground to SF - 121m (100% Imp.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Paved ground to SF - 121m (100% Imp.)	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

musicølink

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

musicølink

Node Type	Node Name	Parameter	Min	Max	Actual
Urban	Roof - 671m (100% lmp.)	Baseflow Total Nitrogen Mean (log mg/L)	0.32	0.32	0.32
Urban	Roof - 671m (100% lmp.)	Baseflow Total Phosphorus Mean (log mg/L)	-0.82	-0.82	-0.82
Urban	Roof - 671m (100% lmp.)	Baseflow Total Suspended Solids Mean (log mg/L)	1.1	1.1	1.1
Urban	Roof - 671m (100% Imp.)	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Roof - 671m (100% Imp.)	Stormflow Total Phosphorus Mean (log mg/L)	-0.89	-0.89	-0.89
Urban	Roof - 671m (100% lmp.)	Stormflow Total Suspended Solids Mean (log mg/L)	1.3	1.3	1.3
0		lei-			

Only certain parameters are reported when they pass validation

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

musicølink

Failing Parameters						
Node Type	Node Name	Parameter	Min	Max	Actual	
Sedimentation	SF Chamber 2.0m	Notional Detention Time (hrs)	8	12	0.154	
Sedimentation	SF Chamber 2.0m	Total Nitrogen - k (m/yr)	500	500	1	
Sedimentation	SF Chamber 2.0m	Total Phosphorus - k (m/yr)	6000	6000	1	
Sedimentation	SF Chamber 2.0m	Total Suspended Solids - k (m/yr)	8000	8000	1	
Only certain parameters are reported when they pass validation						

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

MAXIMUM PIT PLAN DIMENSIONS
450mm x 450mm
600mm x 600mm
900mm x 900mm
1200mm x 1200mm

DEPTH ID	BAG DEPTH	OVERALL DEPTH
1	170	270
2	300	450
3	600	700
	•	

		DEPTH ID		
		1 2 3		
	S			
	М	•	•	
LA	L	•	•	•
_	XL	•	•	•

GENERAL NOTES

- THE MINIMUM CLEARANCE DEPENDS ON THE CONFIGURATION (SEE NOTE 2) AND THE LOCAL COUNCIL REQUIREMENTS.
- CLEARANCE FOR ANY PIT WITHOUT AN INLET PIPE (ONLY USED FOR SURFACE FLOW) CAN BE AS LOW AS S0mm. FOR OTHER PITS, THE RECOMMENDED CLEARANCE SHOULD BE GREATER OR EQUAL TO THE PIPE OBVERT SO AS NOT TO INHIBIT HYDRAULIC CAPACITY.
- OCEAN PROTECT PROVIDES TWO FILTRATION BAG TYPES:- 200 MICRON BAGS FOR HIGHER WATER QUALITY FILTERING AND A COARSE BAG FOR TARGETING GROSS POLLUTANTS.
- 4. DRAWINGS NOT TO SCALE.

