


### Project Delivered for:

Samantha Mitchell - Development Manager
Landcom
Level 14, 60 Station St
Parramatta NSW 2150

0436 946 786 - smitchell@landcom.nsw.gov.au

### Project Delivered by:

Kevin Anderson – Senior Consultant

Edge Environment

Level 5, 39 East Esplanade, Manly, NSW 2095, AUSTRALIA

kevin.anderson@edgeenvironment.com

Dr Jenni Garden - Senior Consultant Edge Environment 60 Halifax Street, Adelaide SA 5000 jenni.garden@edgeenvironment.com

Dr Prae Wongthong – Sustainability Consultant Edge Environment 60 Halifax Street, Adelaide SA 5000 prae.wongthong@edgeenvironment.com

| Revision | Revision Details | Author     | Approved by | Date Approved    |
|----------|------------------|------------|-------------|------------------|
| V1.0     | DRAFT            | JG, KA, CW | CW          | 24 August 2020   |
| V1.1     | FINAL            | KA, CW     | CW          | 1 December 2020  |
| V1.2     | REVISION         | KA, CW     | CW          | 17 December 2020 |
| V1.3     | REVISION         | KA         | KA          | 18 December 2020 |
| V1.4     | REVISION         | KA         | KA          | 02 February 2021 |
| V2.0     | New Scheme       | KA, PW     | KA          | 28 March 2022    |
| V2.1     | REVISION         | KA         | KA          | 05 April 2022    |

# **Executive Summary**

This study relates to a proposal to develop land called the 'Cherrybrook Station Government Land State Significant Precinct' (Cherrybrook Station SSP) by Landcom on behalf of the landowner, Sydney Metro. The State Significant Precinct is centred around Cherrybrook Station on the Metro North West Line.

This Ecologically Sustainable Development (ESD) Plan sets the framework for sustainable outcomes for the Cherrybrook Station SSP by quantifying its environmental footprint, setting ESD targets and identifying potential initiatives to minimise the environmental footprint. It responds to the ESD Key Study Requirement in the *Study Requirements for Cherrybrook Station Government Land* (2020).

The Cherrybrook Station SSP will include a retail space, pedestrian and bicycle links, residential, community facilities, improved landscaping, and new public areas. The design, construction and ongoing operation of this precinct is aimed to be undertaken in a sustainable manner, implementing a range of sustainability initiatives that will minimise the impact of the local environment, help mitigate and adapt to climate change impacts, and improve the liveability of the area for residents, commuters, visitors, and biodiversity.

To inform sustainable outcomes for the SSP, the ESD Plan:

- Establishes a quantitative baseline environmental footprint based on GHG, water and waste indicators
- 2. Presents a suite of design initiatives that can be adopted at the detailed design (and later stages) to reduce the environmental footprint across one or multiple indicators
- 3. Proposes a set of measurable and achievable targets to ensure that the environmental footprint of development within the SSP performs better than the baseline.

The ESD Plan has set appropriate ESD targets aligned to the Landcom Sustainability Strategy and the Plan's assessment of the key environmental footprint impacts of the SSP (Table 1).

**Table 1. Summary of proposed ESD Targets** 

| Indicator                    | # | Metric                                                                                                                                                                                                                                                             | Minimum Target                                                                                                    |
|------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Waste                        | 1 | Diversion of residential waste from landfill during operations                                                                                                                                                                                                     | 50%                                                                                                               |
|                              | 2 | Diversion of construction and demolition waste from landfill during construction and decommissioning                                                                                                                                                               | 95%                                                                                                               |
| Energy &<br>GHG<br>emissions | 3 | Reduction in Scope 1 and 2 emissions in the as built Precinct compared to a business-as-usual baseline                                                                                                                                                             | 50%                                                                                                               |
|                              | 4 | Reduction in Scope 1, 2 and 3 greenhouse gas emissions in the as built Precinct compared to a business-as-usual baseline. Scope 3 emissions must include construction materials (embodied carbon), waste disposal & processing, and employee & resident commuting. | 20%                                                                                                               |
|                              | 5 | Reduction in Scope 1 and 2 greenhouse gas emissions by 2050 compared to a business-as-usual baseline                                                                                                                                                               | 100%                                                                                                              |
|                              | 6 | Tree canopy cover 30 years after the end of construction                                                                                                                                                                                                           | A minimum 25% tree canopy (current 10% cover), subject to addressing bushfire protection measures which may limit |

| Indicator | #  | Metric                                                                                                                                                                 | Minimum Target              |
|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|           |    |                                                                                                                                                                        | tree canopy coverage to 15% |
|           | 7  | % of predicted project energy demand supplied from onsite renewable energy                                                                                             | 5%                          |
|           | 8  | All residential dwellings to achieve the following minimum energy ratings: Detached and semi-detached: 60   Low Rise BASIX 45   Mid-Rise BASIX 45   High Rise BASIX 40 | N/A                         |
| Water     | 9  | % reduction in mains potable water use in the built Precinct compared to a business-as-usual baseline                                                                  | 40% - 50%                   |
|           | 10 | Residential dwellings to achieve BASIX 60 water rating                                                                                                                 | N/A                         |

The ESD Plan also identifies a suite of potential sustainability initiatives that may be adopted to reduce the environmental footprint of the Precinct and meet the ESD targets.

# Contents

| E | xecuti | ve Summary                                                            | iii |
|---|--------|-----------------------------------------------------------------------|-----|
| 1 | Intr   | oduction                                                              | 9   |
|   | 1.1    | Overview                                                              | 9   |
|   | 1.2    | Purpose                                                               | 10  |
|   | 1.3    | Proposal                                                              | 10  |
|   | 1.4    | Relevant study requirements                                           | 11  |
|   | 1.5    | Sustainability context and literature review                          | 12  |
|   | 1.5.   | 1 NSW Climate Change Policy Framework                                 | 13  |
|   | 1.5.   | 2 Greater Sydney Commission – North District Plan                     | 14  |
|   | 1.5.   | Hornsby Shire Council – Local Strategic Planning Statement            | 14  |
|   | 1.5.   | 4 Sydney Metro – Environment & Sustainability Statement of Commitment | 15  |
|   | 1.5.   | 5 Landcom – Sustainable Places Strategy                               | 15  |
|   | 1.6    | Focus of this ESD plan                                                | 15  |
|   | 1.7    | Methodology                                                           | 18  |
| 2 | Bas    | seline                                                                | 19  |
|   | 2.1    | Energy and greenhouse gas emissions                                   | 20  |
|   | 2.2    | Water                                                                 | 24  |
|   | 2.3    | Waste                                                                 | 26  |
|   | 2.4    | Materials                                                             | 27  |
| 3 | Pot    | ential initiatives                                                    | 29  |
|   | 3.1    | Modelling                                                             | 30  |
|   | 3.1.   | 1 Reduction of GHGs                                                   | 30  |
|   | 3.1.   | 2 Potable water reduction                                             | 32  |
|   | 3.1.   | 3 Waste diversion from landfill                                       | 35  |
| 4 | Net    | zero assessment                                                       | 37  |
|   | 4.1    | Greenhouse gas emissions and climate change                           | 37  |
|   | 4.2    | Net zero emission targets                                             | 37  |
|   | 4.3    | Net Zero Assessment                                                   | 38  |
|   | 4.4    | Approach to net zero emissions                                        | 39  |
| 5 | Gre    | een Star Communities and Green Star Homes Alignment                   | 41  |
| 6 | Cli    | mate adaptation alignment                                             | 43  |
| 7 | Tar    | gets                                                                  | 45  |
|   | 7.1    | Implementation methodology                                            |     |
| 8 | Col    | nclusion                                                              |     |
|   |        | dix A. Energy and GHG Model                                           |     |
|   | _      | dix B. Water Model                                                    |     |
|   | -      | dix C. Waste Model                                                    |     |

| Appendix D. Materials Model                         | 53 |
|-----------------------------------------------------|----|
| Appendix E. Initiatives Model                       | 55 |
| Appendix F. Initiatives details and examples        | 56 |
| E1. Greening                                        | 57 |
| E2. Renewable Energy                                | 61 |
| E3. Cool surfaces                                   | 63 |
| E4. Natural and low energy lighting                 | 65 |
| E5. Active and public transport incentives          | 67 |
| W1. WSUD – stormwater management                    | 71 |
| W2. Water efficient fixtures and appliances         | 74 |
| M1. Mass timber buildings                           | 76 |
| M2. Low carbon materials and dematerialisation      | 77 |
| M3. Circular economy                                | 81 |
| Appendix G The Benefits of Trees                    | 88 |
| Appendix H Sustainability Impacts of Scheme Changes | 92 |
|                                                     |    |

# Figures

| Figure 1: Cherrybrook Precinct and Cherrybrook Station State Significant       |           |
|--------------------------------------------------------------------------------|-----------|
| Precinct (subject of this proposal)                                            | 9         |
| Figure 2 Reference Scheme                                                      |           |
| Figure 3. Sustainability context and literature review summary                 | 13        |
| Figure 4. Overview of the Precinct's environmental footprint and relevant UN   |           |
| SDGs                                                                           |           |
| Figure 5. Sustainability approach throughout the development process           | <b>17</b> |
| Figure 6. ESD Plan approach                                                    |           |
| Figure 7. Sources of greenhouse gas emissions. Source: World Resources         |           |
| Institute (WRI) and World Business Council for Sustainable Development         |           |
| (WBCSD), 2011, Corporate Value Chain (Scope 3) Accounting and Reporting        |           |
| Standard                                                                       | 20        |
| Figure 8. Whole-of-life GHG emissions by scope                                 | 21        |
| Figure 9. Whole-of-life main GHG emitters                                      | 21        |
| Figure 10. Whole-of-life emissions by project component                        | 23        |
| Figure 11. Whole of life water consumption by: (a) life stage, and (b) project |           |
| component                                                                      |           |
| Figure 12. Operational and maintenance waste generation                        |           |
| Figure 13. GHG emissions from landfilled waste management                      | <b>27</b> |
| Figure 14. Materials use in the precinct (weight/weight)                       | 28        |
| Figure 15. Materials embodied GHG emissions                                    | 28        |
| J                                                                              | 29        |
| Figure 17. GHG emissions reduction by initiatives group (whole-of-life, 50     |           |
|                                                                                | 32        |
| Figure 18. Percentage GHG reduction by initiatives group (whole-of-life, 50    |           |
| years)                                                                         | 32        |
| Figure 19. Reduction of potable water by initiative (operational 50 year)      | 33        |
| Figure 20. Percentage reduction of potable water (operational 50 year)         |           |
| Figure 21. Reduction of landfilled waste by initiative (operational 50 year)   |           |
| Figure 22 Percentage reduction of landfilled waste                             |           |
| Figure 23. Emissions reduction pathway to limit global warming to 1.5 degree   | 25        |
| Celsius. Source: Intergovernmental Panel on Climate Change, 2018, The          |           |
|                                                                                | 37        |
| Figure 24. Contribution of GHG reduction initiatives vs total GHG emissions,   |           |
| operational sources (assumes net positive energy generation through E2 sol     |           |
| panels)                                                                        |           |
| Figure 25. Contribution of GHG reduction initiatives vs total GHG emissions,   | by        |
| operational emissions source (assumes net positive energy generation           |           |
|                                                                                | 39        |
| Figure 26. Consideration of the pyramid of action types to reduce GHG          |           |
| emissions                                                                      |           |
| Figure 27. Consideration of appropriate timescales for the implementation of   |           |
| GHG reduction initiatives                                                      |           |
| Figure 28: Key stages in the planning and development process                  | 47        |

# **Tables**

| Table 1. Summary of proposed ESD Targets                                 | iii |
|--------------------------------------------------------------------------|-----|
| Table 2: Compliance checklist for SSP Study Requirements                 | 12  |
| Table 3 GHG Emissions by emission source                                 | 22  |
| Table 4. GHG emissions by project component                              | 24  |
| Table 5. Whole-of-life water consumption by project life stage           | 24  |
| Table 6. Whole-of-life water consumption by project component            | 24  |
| Table 7. Operational and maintenance water consumption                   | 25  |
| Table 8. Operational and maintenance waste generation                    | 26  |
| Table 9. List of potential additional initiatives                        | 40  |
| Table 10. List of potential additional initiatives                       | 41  |
| Table 11. Potential impacts of climate change on initiatives and example |     |
| mitigation considerations                                                | 44  |
| Table 12. Proposed environmental footprint targets for the Precinct      | 45  |
|                                                                          |     |

# 1 Introduction

### 1.1 Overview

This study relates to a proposal to develop land called the 'Cherrybrook Station Government Land State Significant Precinct' (the State Significant Precinct) by Landcom on behalf of the landowner, Sydney Metro. The State Significant Precinct is centred around Cherrybrook Station on the Metro North West Line. The Metro North West Line delivers a direct connection with the strategic centres of Castle Hill, Norwest, Macquarie Park and Chatswood. It covers 7.7 hectares of government-owned land that comprises the Cherrybrook Station, commuter carpark and station access road (Bradfield Parade) and vacant land to the east of the station (referred to as the Developable Government Land) (DGL). It is bound by Castle Hill Road (south), Franklin Road (south east) and Robert Road (north west).

As a State Significant Precinct, the Minister for Planning and Public Spaces (the Minister) has determined that it is of State planning significance and should be investigated for rezoning. This investigation will be carried out in accordance with study requirements issued by the NSW Department of Planning, Industry and Environment (now Department of Planning and Environment (DPE)) in May 2020. These study requirements were prepared in collaboration with Hornsby Shire Council and The Hills Shire Council.

The outcome of the State Significant Precinct process will be new planning controls. This will enable the making of development applications to create a new mixed-use local centre to support Cherrybrook Station and the needs of the local community.

At the same time, DPE is also working with Hornsby Shire and The Hills Shire Councils, as well as other agencies such as Transport for NSW, to undertake a separate planning process for a broader area called the Cherrybrook Precinct. Unlike the State Significant Precinct, the outcome of this process will not be a rezoning. Instead, it will create a Place Strategy that will help set the longer-term future for this broader area. Landcom will be consulted as part of this process.

Figure 1 illustrates the site boundaries of the State Significant Precinct and the Cherrybrook Precinct.



Figure 1: Cherrybrook Precinct and Cherrybrook Station State Significant Precinct (subject of this proposal)

Source: NSW Department of Planning, Industry & Environment

## 1.2 Purpose

The purpose of this study is to address the relevant study requirements for the State Significant Precinct, as issued by DPE. It is part of a larger, overall State Significant Precinct Study. This State Significant Precinct Study undertakes planning investigations for the precinct in order to achieve a number of objectives that are summarised as follows (refer to the State Significant Precinct Study Planning Report for a full list of the study requirements):

- facilitate a mixed-use local centre at Cherrybrook Station that supports the function of the station and the needs of the local community
- deliver public benefit through a mixed use local centre
- deliver transport and movement initiatives and benefits
- demonstrate the suitability of the site for the proposed land uses
- prepare a new planning framework for the site to achieve the above objectives.

# 1.3 Proposal

The proposed new planning controls for the State Significant Precinct are based on the investigations undertaken as part of the State Significant Precinct Study process. A Reference Scheme has also been prepared to illustrate one way in which the State Significant Precinct may be developed in the future under the proposed new planning controls.

The proposed planning controls comprise amendments to the Hornsby LEP 2013 to accommodate:

- Rezoning of the site for a combination of R4 High Density Residential, B4 Mixed Use and RE1 Public Recreation zoned land;
- Heights of between 18.5m 22m;
- FSR controls of 1:1 1.25:1;
- Inclusion of residential flat buildings as an additional permitted use on the site in the B4 Mixed Use zone;
- Site specific LEP provisions requiring the delivery of a minimum quantity of public open space and a maximum amount of commercial floor space; and
- New site-specific Design Guide addressing matters such as open space, landscaping, land use, built form, sustainability, and heritage.

The Reference Scheme (refer to **Figure 2**) seeks to create a vibrant, transit-oriented local centre, which will improve housing choice and affordability and seeks to integrate with Hornsby's bushland character. The Reference Scheme includes the following key components:

- Approximately 33,350m<sup>2</sup> of residential GFA, with a yield of approximately 390 dwellings across 12 buildings ranging in height from 2 to 5 storeys (when viewed from Bradfield Parade).
- A multi-purpose community hub with a GFA of approximately 1,300m<sup>2</sup>.
- Approximately 3,200m² of retail GFA.
- Over 1 hectare of public open space, comprising:
  - A village square with an area of approximately 1,250m², flanked by active retail and community uses.
  - o A community gathering space with an area of approximately 3,250m<sup>2</sup>.
  - An environmental space around the pond and Blue Gum High Forest with an area of approximately 8,450m².
- Green corridors and pedestrian through site links, providing opportunities for potential future precinct-wide integration and linkages to the north.



Figure 2 Reference Scheme

Source: SJB

# 1.4 Relevant study requirements

This Ecologically Sustainable Development (ESD) Plan responds to the ESD (10.1) Key Study Requirement in the Study Requirements for Cherrybrook Station Government Land (2020):

Provide a Sustainability Plan that identifies the key sustainable design opportunities for the design, construction and ongoing operation phases of the proposal and establishes a baseline and target for environmental footprint for waste, water, and greenhouse gas emissions in addition to renewable energy targets. This should include reference to the Green Star Communities tool, climate change adaptation and a methodology for implementation. It should also include the impacts of climate change including the increase in wind/storm events in the future.

As such, this ESD Plan sets the framework for sustainable outcomes for the Cherrybrook Station SSP by quantifying its environmental footprint, setting ESD targets and identifying potential initiatives to minimise the environmental footprint.

This plan also addresses the following Climate Change Mitigation and Adaptation (11.1) Key Study Requirement:

Undertake a sustainability assessment of the proposal, reflecting the directions outlined in the 'NSW Climate Change Policy Framework', October 2016, and Northern District Plan 2018 and Hornsby Councils target to achieve a net-zero carbon emissions by 2050. Options for achieving both net zero buildings and a net zero SSP site should be considered.

Table 2 provides a checklist of compliance to the SSP Study Requirements for items 10.1 and 11.1.

**Table 2: Compliance checklist for SSP Study Requirements** 

| Ref. | SSP Study Requirement                                                                                                                                                                                                                                                                                                                                         | Report section      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 10.1 | Provide a Sustainability Plan that identifies the key sustainable design opportunities for the design, construction, and ongoing operation phases of the proposal                                                                                                                                                                                             | Section 3           |
|      | establishes a baseline and target for environmental footprint for waste, water, and greenhouse gas emissions                                                                                                                                                                                                                                                  | Baseline: Section 2 |
|      | waste, water, and greenhouse gas emissions                                                                                                                                                                                                                                                                                                                    | Target: Section 7   |
|      | In addition to renewable energy targets.                                                                                                                                                                                                                                                                                                                      | Section 7           |
|      | This should include reference to the Green Star Communities tool,                                                                                                                                                                                                                                                                                             | Section 5           |
|      | climate change adaptation                                                                                                                                                                                                                                                                                                                                     | Section 6           |
|      | methodology for implementation.                                                                                                                                                                                                                                                                                                                               | Section 7.1         |
|      | It should also include the impacts of climate change including the increase in wind/storm events in the future.                                                                                                                                                                                                                                               | Section 6           |
| 11.1 | Undertake a sustainability assessment of the proposal, reflecting the directions outlined in the 'NSW Climate Change Policy Framework', October 2016, and Northern District Plan 2018 and Hornsby Councils target to achieve a net-zero carbon emissions by 2050. Options for achieving both net zero buildings and a net zero SSP site should be considered. | Section 4           |

## 1.5 Sustainability context and literature review

The Cherrybrook Station SPP is set within an extensive sustainability context comprising of state level to precinct-level sustainability commitments, priorities and aims (**Figure 3**). A key commitment running through the documents is the commitment to net zero emissions by 2050 and greenhouse gas (GHG) reduction which is identified at each level of policy and strategic documentation. The following section presents an overview of the key documents and draws a direct connection between these supporting documents and the Cherrybrook Station SSP.

### **NSW Government**

# State:

NSW Climate Change Policy Framework

# **Greater Sydney Commission**

# Region:

Our Greater Sydney 2056 North District Plan

# Hornsby Shire Council

# Local government:

- Local Strategic Policy Statement
- Net zero by 2050 commitment

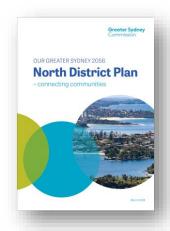
# Precinct

# Sydney Metro and Cherrybrook:

- Landcom Sustainable Places Strategy
- Sydney Metro Environment & Sustainability Policy

Figure 3. Sustainability context and literature review summary




### 1.5.1 NSW Climate Change Policy Framework

The NSW Climate Change Policy Framework ("the Framework") responds to the challenges of climate change through both greenhouse gas (GHG) mitigation and climate resilience and adaptation. Importantly, it outlines aspirational long-term objectives for the state of NSW to:

- "Achieve net-zero emissions by 2050"
- [Ensure] "NSW is more resilient to a changing climate"

The Framework sets out the role of the NSW government in achieving these objectives in the areas of government policy, operations, and advocacy. The Cherrybrook Precinct can adopt the following actions listed in the Framework:

- "Create a certain investment environment" by setting clear minimum targets for GHG performance
- "Reduce risks and damage to public and private assets in NSW arising from Climate Change" – by assessing and monitoring future climate change risks and implementing adaptations appropriate to the timescale and cost.
- "Reduce climate change impacts on health and wellbeing" by identifying initiatives and targets that promote health and wellbeing in a changing climate
- "Manage impacts on natural resources, ecosystems and communities" – by conserving and responsibly managing water, materials, energy, and waste.



### **1.5.2** Greater Sydney Commission – North District Plan

The North District Plan ("the Plan") presents a vision and set of planning priorities for the future of the North District of Greater Sydney as a 30-minute city with improved lifestyle and environmental assets. The Metro Northwest Line is noted in the Plan as part of the enabling infrastructure to provide faster transport links for growth areas in the North District, including Cherrybrook, to the Harbour CBD and its associated business and jobs opportunities.

The Sustainability directions of the Plan focus on:

- "Valuing green spaces and landscape" Open space and urban tree canopy
- "Using resources wisely" Reduced transport emissions and energy use
- "Adapting to a changing world" providing and acting on natural hazard and climate change data and associated risks

The following solutions and pathways listed under 'Planning Priority N21 Reducing carbon emissions and managing energy, water and waste efficiently' can be delivered through the Cherrybrook precinct:

- "Precinct-wide energy, water and waste efficiency systems"
- "Transport demand management initiatives, including work from home, improved walking and cycling, improved access to car sharing, carpooling and on-demand transport"
- Efficient building standards
- "Building and precinct-scale renewable energy generation"
- "Waste diversion from landfill"



## **1.5.3** Hornsby Shire Council – Local Strategic Planning Statement

The Local Strategic Planning Statement ("LSPS") provides a local government area-level breakdown of how the three sustainability directions in the North District Plan will be delivered at a local level.

Importantly, Council has a commitment to net zero emissions by 2050. It will seek to meet this through initiatives similar to those identified in the North District Plan, such as: increased use of renewable energy for both buildings and precincts, public transport and efficient car use (e.g. through carpooling, electric vehicles and autonomous vehicles, and waste diversion.

Additional relevant Council documents include:

- Hornsby Local Environmental Plan (HLEP 2013)
- Hornsby Development Control Plan (HDCP 2013)

A suite of additional strategies and plans are forthcoming in the Future Hornsby set of studies and documents.



# 1.5.4 Sydney Metro – Environment & Sustainability Statement of Commitment

The Sydney Metro program of works incorporates both the Northwest section, which includes the Cherrybrook Station, and the City & Southwest section, which connects Cherrybrook to the CBD and southwest Sydney.

The program Environment & Sustainability Statement of Commitment ("the Statement") aims to deliver services, places and transport infrastructure for our customers while protecting the environment, contributing to economic prosperity, and delivering social benefits for the communities we serve. The commitments relevant to the Cherrybrook Precinct include:

- "Create liveable places that are well integrated and promote active and sustainable transport."
- "Conserve and enhance the natural environment and our built and cultural heritage."
- "Work collaboratively with delivery partners to provide social benefits to the communities in which we work."
- "Tackle climate change and contribute to the NSW Government target of net zero emissions."
- "Promote the greening of our cities to help combat the 'urban heat island' effect."
- "Establish robust objectives and targets that are measurable and take into account whole-of-life considerations."



### **1.5.5** Landcom – Sustainable Places Strategy

Landcom is developing the Cherrybrook Precinct in partnership with Sydney Metro. Landcom's Sustainable Places Strategy ("the Strategy") encapsulates the aim of creating places that "deliver social environmental and economic shared value". Strategy establishes four goals relevant to the Cherrybrook Precinct:

- Climate Resilient Places achieve high environmental performance in terms of building energy and water use, reduced demand on potable water, reduced greenhouse gas emissions, use of renewable energy, minimise urban heat island effect, use sustainable products, divert waste from landfill.
- 2. Healthy & Inclusive Places encourage active and healthy lifestyles and provide public and active transport
- 3. Productive Places provide electric vehicle charge stations
- 4. Accountable & Collaborative Places collaborate with the supply chain and publicly report on sustainability performance

### 1.6 Focus of this ESD plan

This Ecologically Sustainable Development (ESD) Plan quantifies the environmental baseline footprint of Cherrybrook Station SSP and propose targets which are informed with potential initiatives. For the purposes of this study, the environmental footprint consists of the following indicators of environmental impact and resource consumption (Figure 4):

- 1. Energy and greenhouse gas emissions:
  - Energy is required to both construct and power the Precinct. Electricity, gas, and fuels
    typically involve the extraction and burning of fossil fuels, a finite resource that is also
    a leading cause of anthropogenic climate change.



 The use and operation of the Precinct when built will also lead to indirect greenhouse gas (GHG) emissions through the motorised commuting of residents and workers, the treatment and processing of waste generated, and materials consumed in its maintenance and repair.

#### 2. Water:

- Freshwater and potable water is a precious resource in Australia and across the globe. Using our tap water efficiently is key to managing this precious resource and creating resilience against drought.
- Heavy rain can lead to flooding in urban areas with high proportions of hard, impermeable surfaces such as asphalt and concrete. This issue can be aggravated by the impacts of climate change. Capturing rainwater and installing permeable surfaces that water can sink through and reduce runoff volumes.

#### 3. Waste and materials:

- Materials are essential for building and maintaining a Precinct. Materials like concrete and steel are typically made from finite raw materials (like metals and rocks) that are heavily processed with high amounts of energy to make the finished product. This results in both the depleting of finite resources and the emission of greenhouse gasses.
- When materials and goods finish their useful life, they are deposited into our waste management systems. Often this leads to landfilling, which can mean the wastage of finite and valuable goods that could still be put to good use elsewhere in our economy. In addition, when organic materials are landfilled, a process called anaerobic digestion leads to the emission of methane, a highly potent greenhouse gas.

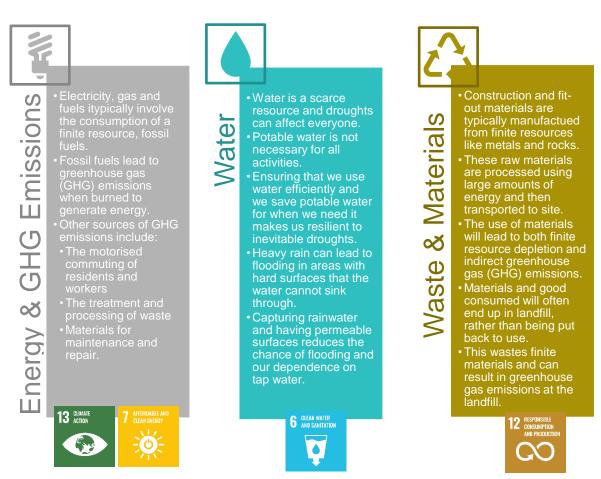



Figure 4. Overview of the Precinct's environmental footprint and relevant UN SDGs

These three indicators reflect the key environmental sustainability impacts of the built environment and are aligned with the United Nations Sustainable Development Goals (UN SDGs):

- SDG 6: Ensure access to water and sanitation for all
- SDG 7: Ensure access to affordable, reliable, sustainable, and modern energy
- SDG 12: Ensure sustainable consumption and production patterns
- SDG 13: Take urgent action to combat climate change and its impacts

The UN SDGs were published in 2015 and provide a framework and definition for sustainability at a global level. Reducing the Precinct's negative impacts and increasing the Precinct's positive impacts in these areas will lead to more sustainable outcomes and contribute to sustainable development.

Current or 'business as usual' practices in the built environment are considered unsustainable and necessitate interventions to implement and integrate sustainable outcomes throughout the development process. The type of intervention and the scale of opportunities diminish as a development progresses along the development pathway (

Figure 5). This Plan has been developed at the 'Planning' step in

Figure 5, and recognises the strong opportunity for shaping sustainable outcomes at this stage.

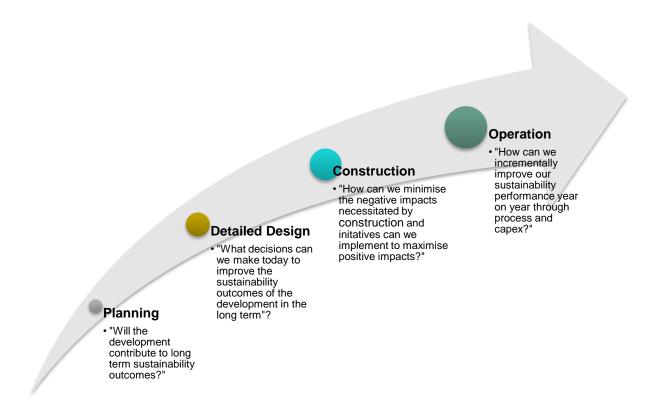



Figure 5. Sustainability approach throughout the development process

# 1.7 Methodology

To inform sustainable outcomes for the Precinct, this Plan (Figure 6):

- Establishes a quantitative baseline environmental footprint based on GHG, water and waste indicators
- 2. Presents a suite of design initiatives that can be adopted at the detailed design (and later stages) to reduce the environmental footprint across one or multiple indicators
- 3. Proposes a set of measurable and achievable targets to ensure the Precinct performs better than the baseline in both construction and operation.



Figure 6. ESD Plan approach

# 2 Baseline

Establishing baselines are important for understanding the current situation/conditions, informing, and establishing realistic and useful targets, and assessing progress in achieving targets. The baseline modelled for Cherrybrook Station SSP is the projected "business-as-usual" proposed planning controls and envisaged future development. It models the planned precinct design using business as usual technologies, and activities to determine GHG emissions, potable water demand, waste generation and diversion from landfill, and GHG emissions embodied in materials. The baseline does NOT include the impacts of sustainability initiatives outlined in this ESD Plan. Rather, it sets the context for comparing the potential benefits of the initiatives.

As we are modelling a baseline based on proposed business-as-usual design and use, our baseline includes a number of assumptions as outlined in this section. Some of these key assumptions are intrinsically associated with the dimension and conceptual design of the precinct. The assumptions embedded in the baseline modelling are as follows:

- Precinct lifespan and occupation:
  - 50-year lifespan
  - o 900 residents
  - o 120 employees
- The reference scheme prepared by SJB considers the following spaces:

Total precinct land area: 53,343 m2

Developable land area: 33,405.00 m2

• Residential spaces total area: 33,350.00 m2

Commercial / retail spaces area: 3,200.00 m2

o Indoor public amenities: 1,300.00 m2

o Green open spaces: 23,052.00 m2

Precinct infrastructure dimensions:

Cycleways 2m wide: 500 m

Footpaths 2m wide: 500 m

Drainage: 500 mSewage: 500 m

Other services: 500 m

## **2.1** Energy and greenhouse gas emissions

Greenhouse gases (GHGs) are chemical compounds that, when emitted, contribute to the greenhouse effect of warming the earth's atmosphere. There are six GHGs identified under the Kyoto Protocol and formally adopted in GHG measurement and accounting practices (refer to the six presented at the top of Figure 6). They include well known compounds such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) and lesser-known compounds such as dinitrogen monoxide (N<sub>2</sub>O).

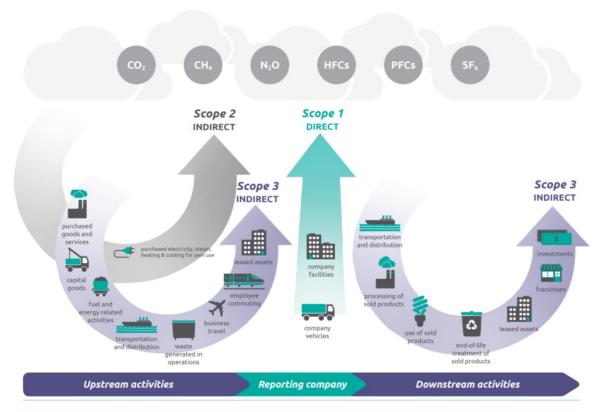



Figure 7. Sources of greenhouse gas emissions. Source: World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD), 2011, Corporate Value Chain (Scope 3) Accounting and Reporting Standard

There are many activities and processes that can lead to GHG emissions, such as burning fossil fuels in vehicles, planes or electricity generation plants or the anaerobic digestion of organic matter in landfills. It is also acknowledged that individuals, organisations, and precincts can indirectly cause the emission of GHGs through our purchasing or spend on goods and services as well as our investments and other financial activities. Therefore, even if we do not directly release GHG emissions from our activities, we depend on services and goods that do. The full spectrum of activities that contribute to GHG emissions, both direct and indirect, are captured in Figure 7.

The sub-model of energy and GHGs for Cherrybrook Station SSP accounts for scope 1, 2 and relevant categories of scope 3. These categories include embodied emissions in materials, waste management and those related to the location of the precinct including such as residents and employees commuting.

Modelling results indicate that most of the emissions are located within scope 3, accounting for 63% of the total, while scope 1 and scope 2 accounts for 6% and 31%, respectively. These figures represent a total whole-of-life emissions of 337,062 tonnes of  $CO_2$ -eq (**Figure 8**).

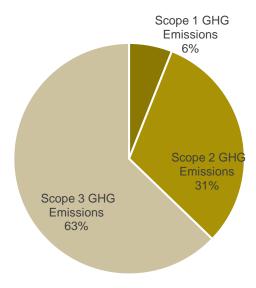



Figure 8. Whole-of-life GHG emissions by scope

To investigate key drivers of GHG emissions in each Scope, we have analysed the proportion of GHG emitted by emitter source and by project component, as shown below.

When grouped by primary GHG emitters, 42% of emissions are associated with operational and maintenance energy use, and 34% with car use by residents and workers (**Figure 9**,

Table 3). Construction and end-of-life emissions are considered negligible, accounting for less than 1% each, though 13% of emissions are embodied in construction materials.

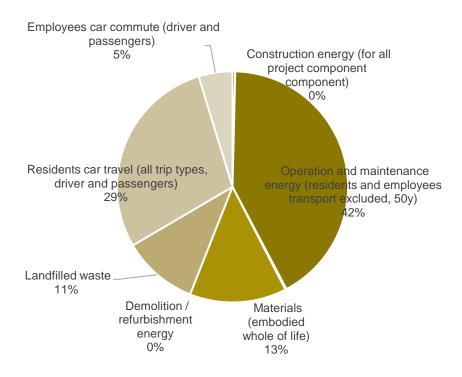



Figure 9. Whole-of-life main GHG emitters

**Table 3 GHG Emissions by emission source** 

| Emissions source                                                                   | Scope 1 (t<br>CO <sub>2</sub> -eq) | Scope 2 (t<br>CO <sub>2</sub> -eq) | Scope 3 (t<br>CO <sub>2</sub> -eq) | Scope<br>1,2&3 (t<br>CO <sub>2</sub> -eq) |
|------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------------|
| Construction energy (for all project component component)                          | 610                                | 563                                | 100                                | 1,274                                     |
| Operation and maintenance energy (residents and employees transport excluded, 50y) | 19,189                             | 104,519                            | 17,513                             | 141,220                                   |
| Demolition / refurbishment energy                                                  | 525                                | -                                  | 27                                 | 552                                       |
| Materials (embodied whole of life)                                                 | -                                  | -                                  | 45,657                             | 45,657                                    |
| Landfilled waste                                                                   | -                                  | -                                  | 35,628                             | 35,628                                    |
| Residents car travel (all trip types, driver, and passengers)                      |                                    |                                    | 96,783                             | 96,783                                    |
| Employees car commute (driver and passengers)                                      |                                    |                                    | 15,948                             | 15,948                                    |
| Total                                                                              | 20,324                             | 105,082                            | 211,656                            | 337,062                                   |

When GHG emissions are grouped by project component, 76% of emissions from all 3 scopes are associated with dwellings, 12% with commercial spaces, 8% with infrastructure, 3% with offices, and 1% with public amenities (**Figure 10**,

**Table** 4). This pattern of emissions correlates with the area of the Precinct comprised by each project component (e.g. dwelling comprise the greatest Precinct area, and public amenities the least), irrespective of the emissions intensity of each of the components.

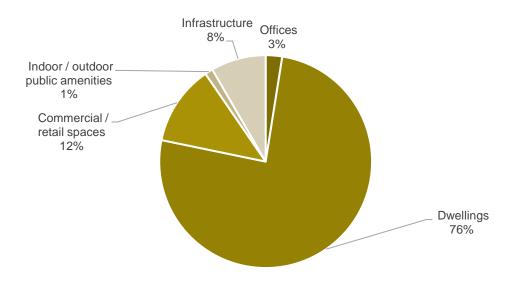



Figure 10. Whole-of-life emissions by project component

Table 4. GHG emissions by project component

| Project component                 | Scope 1 GHG<br>Emissions (t<br>CO <sub>2</sub> -eq) | Scope 2 GHG<br>Emissions (t<br>CO <sub>2</sub> -eq) | Scope 3 GHG<br>Emissions (t<br>CO <sub>2</sub> -eq) | Scope 1,2&3<br>GHG<br>Emissions (t<br>CO <sub>2</sub> -eq) |
|-----------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| Offices                           | 177                                                 | 6,595                                               | 1,676                                               | 8,448                                                      |
| Dwellings                         | 19,636                                              | 66,861                                              | 168,778                                             | 255,275                                                    |
| Commercial / retail spaces        | 199                                                 | 4,958                                               | 35,914                                              | 41,071                                                     |
| Indoor / outdoor public amenities | 156                                                 | 2,068                                               | 1,889                                               | 4,110                                                      |
| Infrastructure                    | 156                                                 | 24,600                                              | 3,403                                               | 28,159                                                     |
| Total                             | 20,324                                              | 105,082                                             | 211,656                                             | 337,062                                                    |

These findings indicate that efforts to reduce emissions should focus on resident's travel and worker commutes, and on-site energy consumption during the operation of the precinct. Further details regarding assumptions and estimations for energy and GHG modelling are provided in **Appendix A**.

### 2.2 Water

This sub-model estimates total water demand and potable water use. The baseline assumes 100% of the demand is sourced from mains water, making potable water use and total water demand equal. The model estimates a whole-of-life consumption of 3,656 ML. The findings show that water use for construction and end-of-life stage platforms are negligible when compared with the operational and maintenance consumption (**Table 5**, **Figure 11a**).

From a project component perspective, 72% of water consumption is associated with dwellings, 24% with public amenities, 3% with commercial spaces, and less than 1% with precinct infrastructure (**Table 6**, **Figure 11b**). Based on these findings, construction and demolition water use is considered negligible from a lifecycle perspective.

Table 5. Whole-of-life water consumption by project life stage

| Stage of life                     | Total consumption (kL) |
|-----------------------------------|------------------------|
| Construction                      | 5,473                  |
| Operational and Maintenance (50y) | 3,644,848              |
| Demolition /refurbishment         | 6,657                  |
| Total                             | 3,656,978              |

Table 6. Whole-of-life water consumption by project component

| Project component                 | Total consumption (kL) |
|-----------------------------------|------------------------|
| Offices                           | 25,613                 |
| Dwellings                         | 2,642,070              |
| Commercial / retail spaces        | 113,840                |
| Indoor / outdoor public amenities | 870,131                |
| Infrastructure                    | 5,324                  |
| Total                             | 3,656,978              |

(a)




Figure 11. Whole of life water consumption by: (a) life stage, and (b) project component

A significant portion of the annual operational and maintenance consumption is related to domestic water use and irrigation for green spaces (**Table 7**). Domestic water consumption is estimated according to Sydney Water averages for all seasons, and irrigation is estimated as per the Green Star calculator and recommended assumptions. Further details regarding assumptions and estimations for water modelling are provided in **Appendix B**.

**Table 7. Operational and maintenance water consumption** 

| Description                    | Annual consumption (kL) |  |
|--------------------------------|-------------------------|--|
| Office spaces                  | 511                     |  |
| Residential spaces             | 52,758                  |  |
| Commercial spaces (retail)     | 2,269                   |  |
| Indoor public amenities        | 922                     |  |
| Green areas                    | 16,344                  |  |
| Streets 6m wide cleaning       | -                       |  |
| Cycleways 2m wide (m) cleaning | 42                      |  |
| Footpaths 2m wide (m) cleaning | 42                      |  |
| Drainage cleaning              | 10                      |  |
| Total (annual)                 | 72,897                  |  |
| Total (50 years)               | 3,644,848               |  |

### 2.3 Waste

Waste generation is estimated based on data provided in official local government and industry reports. The available reports indicate 44% of municipal waste in Hornsby Shire Council is diverted from landfill, with a desired diversion target of 70%. Diversion of commercial and industry waste is estimated at 62%, though also with a target of 70%.

Construction and demolition waste are not included for the purposes of this study and so the following outputs relate only to operational and maintenance waste generation. Based on our assumptions, an estimated 60,005 tonnes of waste will be generated over the Precinct's lifespan, with just under half of this (27,338 tonnes) going to landfill (**Table 8**). This landfill disposal amount represents 35,628 tonnes of  $CO_2$ -eq due to waste management (landfill waste only).

| Project component                 | Total Generation (tonnes) | Total disposed to landfill (tonnes) | GHG Emissions<br>(ton CO <sub>2</sub> -eq) |
|-----------------------------------|---------------------------|-------------------------------------|--------------------------------------------|
| Offices                           | 525                       | 200                                 | 239                                        |
| Dwellings                         | 25,200                    | 14,112                              | 19,757                                     |
| Commercial / retail spaces        | 34,100                    | 12,958                              | 15,550                                     |
| Indoor / outdoor public amenities | 180                       | 68                                  | 82                                         |
| Total                             | 60 005                    | 27 338                              | 35 628                                     |

**Table 8. Operational and maintenance waste generation** 

Over the Precinct's lifespan, 57% of waste is projected to be generated by commercial areas, 42% by residents, and the balance by public amenities (0.29%) and offices (0.87%) (**Figure 12**).

Contrary to results for GHG emissions and water consumption (see Sections 2.1 and 2.2), generated waste is strongly correlated to user intensity. For example, commerce and retail is the most intense waste generator (3.1 tonnes/ full-time employee equivalent) and is responsible for more than half of the waste generated, but accounts for only 9.6% of the precinct area.

Interestingly, the proportion of GHG emissions due to waste management is higher for dwellings, compared to commercial areas (**Figure 13**). One explanation is that diversion rates are currently lower for residents than commerce and the emissions per ton of waste are higher for residents: 1.4 ton  $CO_2$ -eq/ ton compared with 1.2 ton  $CO_2$ -eq/ ton according to EPA (2019) data. Further details regarding assumptions and estimations for waste modelling are provided in **Appendix C**.

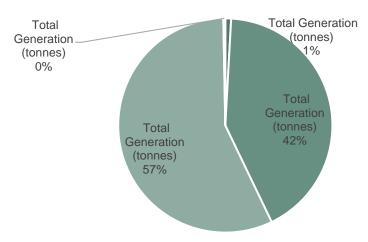



Figure 12. Operational and maintenance waste generation

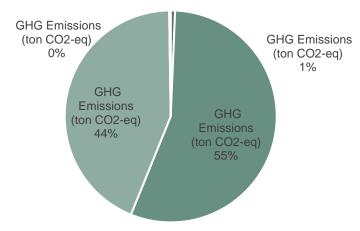



Figure 13. GHG emissions from landfilled waste management

### 2.4 Materials

Only construction materials were considered for the purposes of this modelling. Since there is currently no detailed design available, material estimations are based on previous research undertaken by Edge Environment, internal data, and LCIA databases. These rates include cradle-togate emissions and accounts for construction and maintenance materials. They do not include construction energy since it is already accounted for under the construction stage in the energy and GHG emissions sub-model.

Furthermore, only materials accounting for up to 90% of a typical building's global warming potential were included in the baseline. This selection includes:

- Aluminium Façade
- Aluminium Other (e.g. window and door frames, railings, mechanical and electrical systems)
- Concrete Other
- Concrete Structural
- Steel Other (e.g. railings, secondary structures, ornaments)
- Steel Reinforcement
- Asphalt for infrastructure components
- Aggregates for infrastructure components

76% of materials use (weight/weight) are used in the construction of dwellings, and 74% of all Precinct materials correspond to different types of concrete, assuming the physical nature of materials in the Precinct is based on the dimensions of the components. Hence, the largest components of the Precinct – dwellings – account for most of the materials, followed by retail, and infrastructure (Figure 14). Therefore, high emitting materials such as steel and aluminium account for a more prominent portion of total embodied emissions. The model estimates that reinforcement steel (28%), aluminium (28%), and structural concrete (25%) account for most of the embodied emissions (Figure 15).

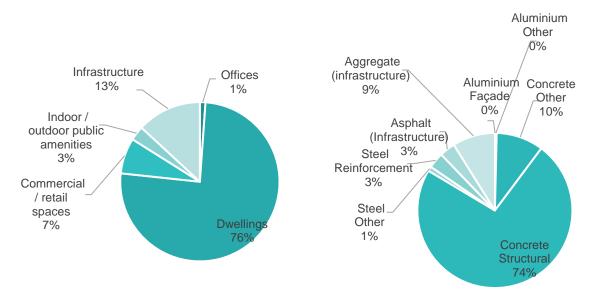



Figure 14. Materials use in the precinct (weight/weight)

Dwellings accounts for 76% of the materials whilst it accounts by 86% of the materials embedded emissions. On the other hand, infrastructure consumes 13% of the materials by weight, but it only account for less than 1% of emissions (See Figure 14 vs Figure 15). Given the high intensity of metals, it is expected that the proportion contributed to the Precinct embodied emissions will be higher for dwellings than by weight of materials alone. Further details regarding assumptions and estimations for materials modelling are provided in **Appendix D**.

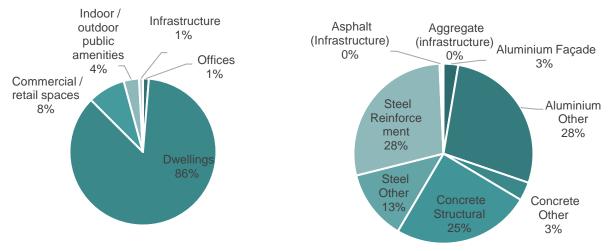



Figure 15. Materials embodied GHG emissions

# 3 Potential initiatives

This study suggests 10 sustainable initiatives for the design, construction and ongoing operation phases of the project. The purpose of these initiatives is to model their impacts on the baseline estimated in the previous section. The results of this excersise will assit on setting achivable targets for the SSP.

Each initiative is allocated a primary sustainability indicator code: energy and GHG emissions (E), water (W), or waste and materials (M). For each initiative, we also present sub-initiatives, which represent the potential range of approach options. We recognise that many sub-initiatives will impact, to varying degrees, more than one indicator.

Figure 16 summarises the initiatives. For details and example of each of the initiatives, please refer to **Appendix F**.



# **Energy & GHG emissions**

### E1. Greening

- E101. Green roofs & rooftop gardens
- E102. Green walls & vertical gardens
- E103. Increased canopy cover

### E2. Renewable Energy

- E201. Solar panels on buildings
- E202. Solar panels on public access spaces

#### E3. Cool surfaces

- E301. Cool seal products on rooftops
- E302. Cool seal products on pavements

## E4. Natural and low energy lighting

- E401. Self-emitting pavements for cycleways and footpaths
- E402. Smart lighting

### E5. Active and public transport incentives

- E501. Infrastructure & facilities for cyclists
- E502. Walkable distance to diverse services of public transport
- E503. Mixed land use including diversity of amenities
- E504. Reduced parking, car pool parking, & car-share exclusive parking



## Water

### W1. WSUD - stormwater management

- W101. Stormwater/rainwater diversions & capture, including rainwater gardens
- W102. Permeable paving
- W103. Domestic rainwater reuse
- W104. Rainwater for fire system top up

### W2. Water efficient fixtures & appliances

- W201. Water saving fixtures & appliances
- W202. Dry appliances (composting toilets)



# Waste & materials

### M1. Mass timber buildings

M101. Mass timber buildings

### M3. Circular economy

M301. Commingled materials

M302. Food waste

### M2. Low carbon materials & dematerialisation

- M201. Low carbon concrete
- M202. Dematerialisation
- M203. Reused materials
- M204. Environmental Product Disclosures (EPDs)

Figure 16. Summary of initiatives

Indicators will likely have benefits that extend beyond the three main indicators considered here. Additional likely benefits include, for example: improved biodiversity and ecosystem functioning, improve human physical and mental health and well-being, increased local economic prosperity, increased local property values, decreased crime rates, and increased infrastructure lifespans.

Each initiative may have a variety of ways to interpret and implement them within the project phases, ranging from business-as-usual approaches to novel, innovative, and at times experimental approaches. Whilst minimum sustainability targets may be achieved through a business-as-usual approach only, Landcom strive to be leaders in the sustainability space, and so favour consideration of a combination of buisness-as-usual and more innovative approaches.

Implementation examples from within Australia or internationally are also provided, showing where possible, examples of business-as-usual through the innovative and experimental options in **Appedix F**.

### 3.1 Modelling

The following section provides the modelled estimates of the impacts of implementing initiatives outlined in **Figure 16**. The modelling of initiatives aims to reduce GHG emissions, landfilled waste, and potable water consumption from the baseline. The purpose of including this modelling based on potential initiative implementation is to demonstrate achievable, sustainability improvements, and so provide confidence in setting targets. It should be noted that the following initiatives modelling is considered conservative, and increased benefits are considered possible with careful consideration and innovative design.

Although each of the initiatives is classified into a key sustainability category, their implementation can impact multiple categories. Therefore, each of the initiatives is modelled for all three sustainability impacts to assess their trade-offs. Outputs have also been presented per sub-initiative to avoid overlapping and double counting between similar initiatives.

### 3.1.1 Reduction of GHGs

These initiatives try to reduce scope 1, 2 and 3 emissions at different stages of the Precinct's lifespan.

### E1. Greening

This first group includes green roofs, rooftops gardens, green walls, and increase of canopy (see Box A). These initiatives are naturally grouped because they have the similar objectives of reducing temperatures and sequestering CO<sub>2</sub>. These reductions represent less energy consumption for cooling and hence, less GHG emissions.

According to Edge's research and internal modelling, this reduction is estimated at 31% (59,574 annual kWh) less electricity used for rooms under green roofs, 12% (46,122 annual kWh) less electricity for rooms behind green walls and 42 tonnes of CO<sub>2</sub>-eq sequestration per year. However, greening initiatives have a counter-productive impact on water consumption since plantings require irrigation. However, this impact on water consumption could be offset with appropriate design and the combined installation of water harvesting infrastructure.

#### E2. Renewable Energy

Solar panels offer the most important opportunity for the precinct. The modelling assumes an installation of 4,476 m2 (716 kW) of solar panels with an efficiency of 16%. The results show a production of 984,332 kW/year for Sydney climatic conditions, which represents a reduction of 906  $CO_2$ -eq tonnes/ year.

### E3. Cool surfaces

Like greening, cool surfaces seeks to reduce temperature outdoors and indoors. The model assumes 10,000m2 rooftops with cool surfaces. Research indicates that 15 % of energy reduction of rooms under this cool surfaces. This accounts for 119,148 kWh/year or a saving of 110 tonnes of CO<sub>2</sub>-eq.

### E4. Natural and low energy lighting

These initiatives include motion sensors and the use of natural lightening. It is important to mention that LED technology is considered BAU in this study, so it is not considered in this model. It is

estimate that 30% of electricity could be saved with these initiatives, reducing 25,719 kWh/year or 24 tonnes of CO<sub>2</sub>-eq every year.

### E5. Active and public transport incentives

Findings in the baseline discovered that scope 3 emissions associated with travel offers a significant opportunity to reduce emissions. This group of initiatives include land use diversity, cycling facilities, reduced parking spots, and pedestrian, cyclists, and electric vehicles prioritisation. Since there is a critical overlap between these initiatives, a sustainable transport assessment may be necessary to determine each of the benefits and trade-offs. However, it is possible to set a target for a shift in car use for residents and employees of the precinct.

Transport studies would be required to determine the impacts of active and public transport in Cherrybrook Station SSP. However, there are some good examples of the impacts of transport strategies to reduce car trips such as Parramatta LGA which can be used as reference.

Transport surveys from Parramatta LGA demonstrates that the combination of facilities, access to public transport, and land use makes it possible to reduce car trips to just 20% of all trips. This rate of car use in Cherrybrook Station SSP could save 462 tonnes of CO<sub>2</sub>-eg per year.

### M1. Mass timber buildings

Conservatively, use of mass timber could reduce 9% of the embodied emissions of a traditional concrete and steel building. For this study, it is assumed that only one of the residential buildings will be built with mass timber. The GHG emission savings of this action is estimated to be 354 tonnes for the whole-of-life of the building.

A more ambitious goal such as using mass timber in all buildings represents a reduction of 4,008 tonnes of CO<sub>2</sub>-eq throughout the SSP life cycle.

### M2. Low carbon concrete

Low carbon concrete could be used as a replacement for concrete for the rest of the buildings if business-as-usual concrete does not already include supplementary cementitious materials (as per the baseline). The replacement with a low carbon mix could reduce 46% of the emissions embodied in concrete, equivalent to a savings of 5,717 tonnes CO-2e throughout its life cycle.

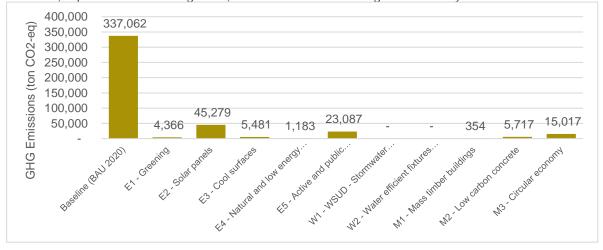



Figure 17. GHG emissions reduction by initiatives group (whole-of-life, 50 years)

**Figure** 17 summarises the impacts of these initiatives throughout the lifecycle of the precinct. Note that E2 (solar panels) are a significant contributor to the reduction efforts of this sustainability proposal.

E2 is followed by E5 (active and public transport incentives), and M3 (circular economy) which has a significant impact in scope 3 emissions thanks to waste diverted from landfill and subsequently, a reduction in waste management emissions (see Section 3.11.3).

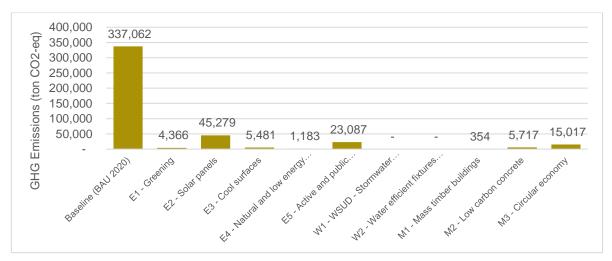



Figure 17. GHG emissions reduction by initiatives group (whole-of-life, 50 years)

**Figure 18** below summarises the percent reduction for the combination of all initiatives. Initiatives E1 (greening) and E3 (cool surfaces) were excluded from this modelling to avoid double counting due to the overlap and mutually exclusive nature of this initiatives with E2 (solar panels). The findings show a total reduction in emissions of 26% due to the combination of all initiatives.

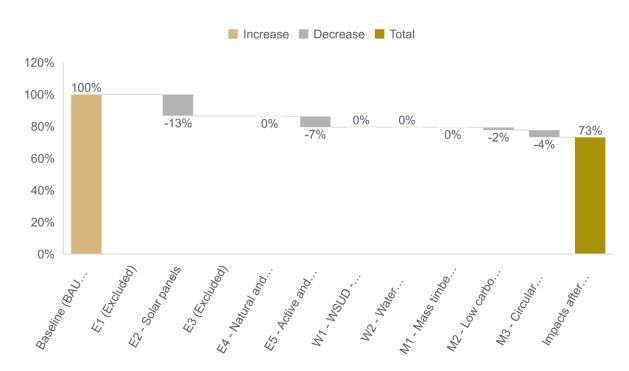



Figure 18. Percentage GHG reduction by initiatives group (whole-of-life, 50 years)

### 3.1.2 Potable water reduction

As mentioned previously, all water demands are assumed to be on potable water. Therefore, initiatives in this section seek to reduce the use of potable water.

### W1. WSUD - Stormwater management

This first initiative includes the collection of stormwaters and its treatment with WSUD methods. According to Cherrybrook SSP WSUD advisor, an average 5kL of stormwater could be collected per

building per day. This represents 18,250 kL per year or 912,500 kL for all the modelled operational stage (**Figure 19**).

### W2. Water efficient fixtures and appliances

The baseline assumes that all fixtures and appliances in buildings are rated as at least 3-star water saving as per 2020 benchmarks. Water efficient equipment is assumed to be rated 5-star. According to estimations of common appliances in households, the difference of changing all fixtures and appliances represents a reduction of 33% of water use, or 931 ML of water during the precinct operational stage (**Figure 19**).

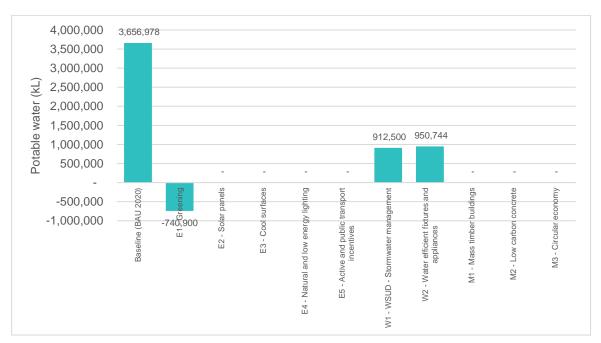



Figure 19. Reduction of potable water by initiative (operational 50 year)

**Figure 20** below demonstrates that all initiatives could reduce potable water by 51%. W2 (water efficient fixtures and appliance) presents the largest chance of improvement (26%) while WSUD could reduce 25% of original potable water demand.

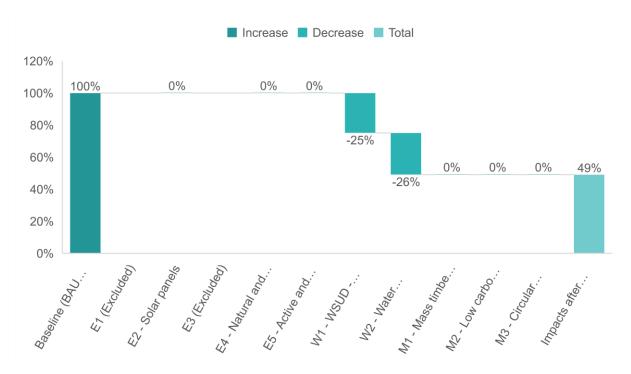



Figure 20. Percentage reduction of potable water (operational 50 year)

#### 3.1.3 Waste diversion from landfill

There are many metrics that could be analysed from waste diversion, with the most prominent being the diversion of waste from landfill. This target has been modelled to represent the greatest and most comprehensive environmental impacts of waste produce in landfill, since it is associated with a significant amount of emissions due to waste management processes in landfills.

### M3. Circular economy

This group includes a variety of sub-initiatives to reduce landfilled waste, or even waste generation. Instead of modelling several waste streams and making a myriad of assumptions the modelling of this initiative assumes the achievement of NSW State waste diversion from landfill target (70%). Actual data from Hornsby Shire Council estimates a diversion rate of 44% from residential and 62% from commerce and industry waste. Achieving 70% of waste diversion in both streams represents 12,514 tonnes of waste diverted from landfill for the 50-year lifespan of the Precinct operation (Figure 21). The diversion of all this waste represents a reduction of 15,017 tonnes of CO<sub>2</sub>-eq (as seen above in **Figure 17**).

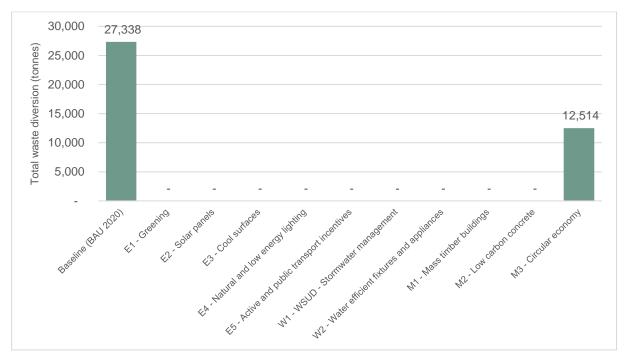



Figure 21. Reduction of landfilled waste by initiative (operational 50 year)

M3 (circular economy) initiative represents 100% of the reduction of materials in this study. It includes sub-initiatives such as increased recycling rates through the implementation of commingled recycling stream (M301) and increased recycling food waste (M302). Assuming these initiatives increase the

diversion of waste to 70%, it would divert 46% of landfilled waste estimated in the baseline (**Figure 22**).

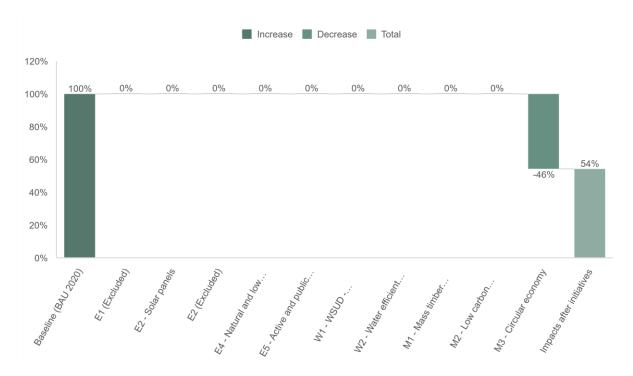



Figure 22 Percentage reduction of landfilled waste

# 4 Net zero assessment

# **4.1** Greenhouse gas emissions and climate change

The excessive release of GHGs as a result of man-made industrial activities and processes has led to the enhanced greenhouse effect, or climate change. Peer-reviewed scientific studies collated and published by the Intergovernmental Panel on Climate Change (IPCC) in 2015 found that:

"Human activities are estimated to have caused approximately 1.0°C of global warming above preindustrial levels..."

In addition, it found that the earth is on track for 1.5°C global average warming (given current rates of activity) between 2030 and 2052 and this will significantly affect: "health, livelihoods, food security, water supply, human security and economic growth". The Intergovernmental Panel on Climate Change (IPCC) therefore recommends a global target to limit warming to 1.5°C.

# **4.2** Net zero emission targets

To limit warming to 1.5°C a GHG reduction pathway that achieves net zero emissions by 2050 is recommended by the IPCC (**Figure 23**).

Net zero emissions refers to a state of net neutral or balanced GHG emissions through both man-made and natural actions. An equilibrium is reached between activities that emit GHGs and activities that absorb or capture GHG emissions from the earth's atmosphere.

A target to achieve net zero emissions by 2050 has been set at a Council, regional and State level through:

- The NSW government's NSW Climate Change Policy Framework
- The Greater Sydney Commission's Northern District Plan
- Hornsby Shire Council's net zero emissions resolution

#### Global total net CO2 emissions

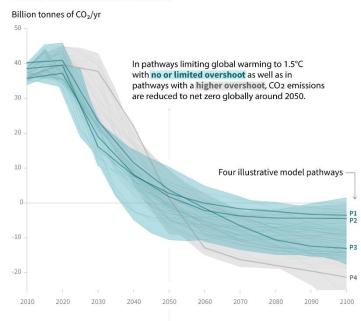



Figure 23. Emissions reduction pathway to limit global warming to 1.5 degrees Celsius. Source: Intergovernmental Panel on Climate Change, 2018, The Special Report on Global Warming of 1.5 °C

The federal government is also bound by a similar commitment under its ratification of the Paris Agreement.

It should be noted that an interim target of ~50% reduction by 2030 is as essential to achieving the 1.5 degree warming target as net zero by 2050 (Figure 23). The need for strong decarbonisation in the short term is reflected in the NSW Government's target of a 35% reduction by 2030 and its Net Zero Plan Stage 1: 2020-2030.

This Plan therefore assesses the potential for the Precinct to support net zero emissions by 2050 in both the buildings and the site.

<sup>&</sup>lt;sup>1</sup> Source: Intergovernmental Panel on Climate Change, 2018, The Special Report on Global Warming of 1.5 °C

#### 4.3 Net Zero Assessment

The baseline chapter of this Plan (refer to Chapter 2) presents a high-level, 'business as usual' assessment of the Precinct's cradle to grave Scope 1, 2 and 3 GHG emissions for major emissions sources<sup>2</sup>. The following initiatives presented in earlier chapters were selected for the net zero assessment to understand how the Precinct can support a transition to net zero emissions by implementing solutions available today:

- E2 solar panels: Photovoltaic solar panels on all rooftops (assumes 50% of rooftop space is available for solar panels)
- E4 natural and low energy lighting: 50% energy reduction through smart lighting control and natural light provision.
- E5 active and public transport incentives: 20% reduction in resident and worker commuting car trips through access to public transport options and local job creation
- M3 circular economy: 70% diversion from landfill of waste generated by both residents and offices, in line with the NSW Waste Avoidance and Resource Recovery Strategy 2014-21

Comparing these initiatives with the business as usual baseline carbon footprint suggests that approximately 30% of the Precinct's major emissions sources can be mitigated through the implementation of these initiatives (**Figure 24**).

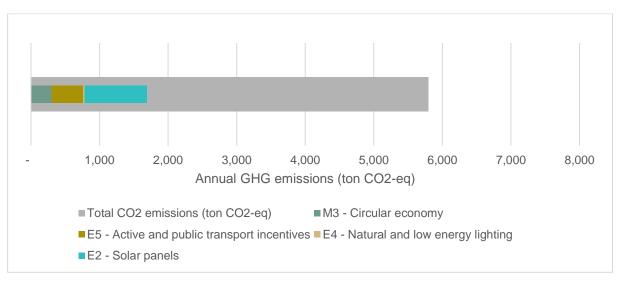



Figure 24. Contribution of GHG reduction initiatives vs total GHG emissions, all operational sources (assumes net positive energy generation through E2 solar panels)

-

<sup>&</sup>lt;sup>2</sup> It is important to note that not all emissions sources were modelled for this high-level study. Major emissions sources based on Edge's past building Life Cycle Assessments were identified for the purposes of this study.

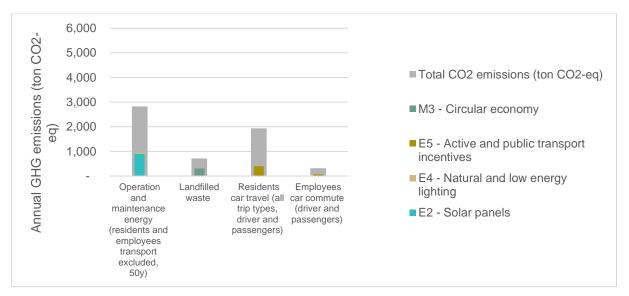



Figure 25. Contribution of GHG reduction initiatives vs total GHG emissions, by operational emissions source (assumes net positive energy generation through E2 solar panels)

# **4.4** Approach to net zero emissions

To make up the approximately 70% shortfall in reduction of major emissions sources required to achieve net zero emissions, additional initiatives and actions are required. The approach to identifying and implementing such initiatives and actions should consider the appropriate action type and timescale for implementation.

A range of action types are available to reduce GHG emissions (**Figure 26**). Adopting new technologies can eliminate GHG emissions associated with existing technologies (for example the generation of energy from solar panels rather than coal fired power stations). Compared to soft actions such as behaviour and process change, technological solutions are often more costly but low effort. Emissions reduction initiatives should consider the appropriate action type for the emissions source, target population and the perceived or real cost versus benefit.

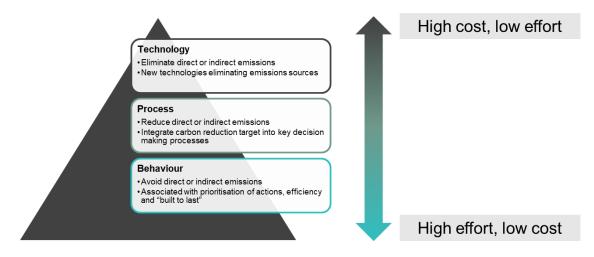



Figure 26. Consideration of the pyramid of action types to reduce GHG emissions

The long timescales of net zero commitments (both 2030 and 2050) mean that priorities and contexts will inevitably shift as time progresses (**Figure 27**). In the short term, 'no regrets' solutions with positive or neutral net present value (NPV) should be implemented, alongside systems or processes to accurately account for GHG emissions. As time progresses, solutions with the lowest negative NPV should be priorities, while still seeking out new solutions or revised solutions with positive or neutral NPVs. While 2050 remains in the distant future, planning can begin now by:

- Identifying shortfalls that require research and investment today
- Advocating for industry action or collaboration on difficult emissions sources
- Communicating net zero ambitions to suppliers in a commercial context to send a clear market
- Identifying and monitoring key decision points or triggers for the adoption of different plans and actions, adjusting to the social, political, economic, and environmental context.



# No regrets

Implement solutions with positive or neutral NPV Establish systems and processes for carbon accounting and mitigation



# Reduction pathway

2030 Implement priority solutions with lowest negative NPV

Continue to seek positive or neutral NPV projects



# Advocacy and trigger points

2050

Support the identification and development of long term solutions (technology or process)

Advocate for industry action on priority, persistent carbon impacts Communicate ambition to supply chain in a commercial context

Monitor trigger or decision points and act

Figure 27. Consideration of appropriate timescales for the implementation of GHG reduction initiatives

Alongside the additional initiatives listed in Chapter 3, the following initiatives can be considered for implementation during the Precinct's development process to meet the modelled shortfall (Table 9). These initiatives should be considered for implementation with consideration of the appropriate timescale and action type to maximise both cost-effectiveness and success in implementation.

Table 9. List of potential additional initiatives

| Emissions source                   | Additional initiatives                                                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Energy                             | Upgrade or install electric appliances in lieu of gas                                                                                        |
|                                    | <ul> <li>Upgrade or procure cooling appliances with no GHG-based refrigerants</li> </ul>                                                     |
|                                    | <ul> <li>Upgrade or install high energy star ratings for energy efficient appliances</li> </ul>                                              |
|                                    | <ul> <li>Design or upgrade rooms and buildings to minimise air-leakage and<br/>therefore cooling and heating requirements</li> </ul>         |
| Landfilled waste                   | <ul> <li>Advocate for the ban or minimisation of 'hard-to-recycle' goods to<br/>avoid the need for landfilling in the first place</li> </ul> |
|                                    | Advocate for the increased recyclability of packaging materials                                                                              |
|                                    | Advocate for circular economy solutions for textile and clothing waste                                                                       |
|                                    | <ul> <li>Implement soft plastic and food and garden waste collection<br/>(including on-site composting)</li> </ul>                           |
| Commuting of residents and workers | <ul> <li>Install or upgrade electric vehicle charging stations coupled with<br/>renewable generation</li> </ul>                              |
|                                    | Implement carpooling or car share arrangements                                                                                               |
|                                    | Increase the safety of cycling and walking paths                                                                                             |

# 5 Green Star Communities and Green Star Homes Alignment



The Green Building Council of Australia (GBCA) is a member-based organisation serving as the peak building sustainability organisation in Australia. The Green Star Communities Rating Tool provides a third party assured standard or benchmark of the sustainability performance of precincts across Australia that can be easily interpreted by the general public.

The Rating defines communities in the broadest sense, capturing not just a physical location but the associated economy, culture, social setting, and other socio-economic layers to place. The sustainability categories assessed under the Rating include:

- Governance
- Liveability
- Economic Prosperity
- Environment

All the ESD initiatives are aligned to some of Green Star Communities Credits and the recently presented Green Star Home categories. Therefore, they could contribute on reaching a high-level rating in both frameworks if executed. The table below summarises the relationship of initiatives with these rating tools.

Table 10. List of potential additional initiatives

| Initiative       | Sub-initiative                                              | Green Star<br>Communities<br>v1.1 Categories          | Green Star Communities<br>v1.1 Credits                                                 | Green Star Homes<br>Categories  |
|------------------|-------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|
|                  | Green roofs and rooftop gardens (public and private access) | Environment                                           | Greenhouse Gas Strategy,<br>Heat Island Effect                                         | Healthy, Resilient,<br>Positive |
| Greening         | Green walls (vertical gardens)                              | Environment                                           | Greenhouse Gas Strategy,<br>Heat Island Effect                                         | Healthy, Resilient,<br>Positive |
|                  | Increased canopy                                            | Environment                                           | Greenhouse Gas Strategy,<br>Heat Island Effect, Ecological<br>Value, Sustainable Sites | Healthy, Resilient,<br>Positive |
| Solar panels     | Solar panels on buildings                                   | Environment,<br>Economic<br>prosperity                | Greenhouse Gas Strategy,<br>Peak Electricity Demand<br>Reduction                       | Positive                        |
| Solal pariels    | Solar panels on public access spaces                        | Environment,<br>Economic<br>prosperity                | Greenhouse Gas Strategy,<br>Peak Electricity Demand<br>Reduction                       | Positive                        |
|                  | Use cool seal products on rooftops                          | Environment                                           | Greenhouse Gas Strategy,<br>Heat Island Effect                                         | Resilient, Positive             |
| Cool<br>surfaces | Use cool seal products on pavements                         | Environment,<br>Economic<br>prosperity,<br>Innovation | Greenhouse Gas Strategy,<br>Heat Island Effect, Innovation                             | Resilient, Positive             |

| Initiative               | Sub-initiative                                                          | Green Star<br>Communities<br>v1.1 Categories          | Green Star Communities<br>v1.1 Credits                                               | Green Star Homes<br>Categories  |  |
|--------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--|
| Natural and low energy   | Self-emitting pavements for cycleways and footpaths                     | Environment,<br>Economic<br>prosperity,<br>Innovation | Greenhouse Gas Strategy,<br>Light Pollution, Innovation                              | Positive                        |  |
| lighting                 | Motion detectors                                                        | Environment,<br>Economic<br>prosperity                | Greenhouse Gas Strategy                                                              | Positive                        |  |
|                          | Infrastructure and facilities for cyclists                              | Environment                                           | Greenhouse Gas Strategy,<br>Sustainable Transport and<br>Movement, Sustainable Sites | Healthy, Positive               |  |
| Active and public        | Walkable distance to diverse services of public transport               | Environment                                           | Greenhouse Gas Strategy,<br>Sustainable Transport and<br>Movement, Sustainable Sites | Healthy, Positive               |  |
| transport incentives     | Mixed land use including diversity of amenities                         | Environment                                           | Greenhouse Gas Strategy,<br>Sustainable Transport and<br>Movement, Sustainable Sites | Healthy, Positive               |  |
|                          | Reduced parking, parking pooling, and car-share exclusive parking spots | Environment                                           | Greenhouse Gas Strategy,<br>Sustainable Transport and<br>Movement, Sustainable Sites | Healthy, Positive               |  |
|                          | Stormwater/rainwater diversion and capture, including rainwater gardens | Environment                                           | Integrated Water Cycle                                                               | Resilient, Positive             |  |
| WSUD -<br>Stormwater     | Permeable paving                                                        | Environment                                           | Integrated Water Cycle                                                               | Resilient, Positive             |  |
| management               | Rainwater as replacement for toilets                                    | Environment                                           | Integrated Water Cycle                                                               | Resilient, Positive             |  |
|                          | Rainwater as replacement fire sprinklers                                | Environment                                           | Integrated Water Cycle                                                               | Resilient, Positive             |  |
| Water<br>efficient       | Water saving fixtures and appliances                                    | Environment                                           | Integrated Water Cycle                                                               | Positive                        |  |
| fixtures and appliances  | Dry appliances (composting toilets)                                     | Environment                                           | Integrated Water Cycle                                                               | Positive                        |  |
| Mass timber buildings    | Mass timber buildings                                                   | Environment                                           | Green House Gas Strategy,<br>Materials                                               | Healthy, Resilient,<br>Positive |  |
|                          | Low carbon concrete                                                     | Environment                                           | Green House Gas Strategy,<br>Materials                                               | Positive                        |  |
| Low carbon materials and | Dematerialisation                                                       | Environment                                           | Green House Gas Strategy,<br>Materials, Waste Management                             | Positive                        |  |
| dematerialis<br>ation    | Re-used materials                                                       | Environment                                           | Green House Gas Strategy,<br>Materials, Waste Management                             | Positive                        |  |
|                          | EPDs                                                                    | Environment                                           | Green House Gas Strategy,<br>Materials                                               | Positive                        |  |
| Circular                 | Comingled materials                                                     | Environment                                           | Waste management                                                                     | Positive                        |  |
| economy                  | Food waste                                                              | Environment                                           | Waste management                                                                     | Positive                        |  |

# 6 Climate adaptation alignment

Globally, and locally, we are locked into a certain amount of climate change, with impacts already being experienced. The climate changes projected for the coming years (to 2070) in the Greater Sydney region include<sup>3</sup>:



Increased annual average temperatures (up to 1.9°C), particularly in summer and spring



Increased annual rainfall (~8.9%), particularly in summer and autumn



Increased risk of severe fire events, particularly in summer and spring



Increased number of hot days (additional 10-20 days >35°C), particularly in summer and spring



Decreased number of cold nights (average of 12 fewer nights per year less than 2°C), particularly during winter

Climate change impacts of key concern for the Cherrybrook Station precinct were assessed by AECOM<sup>4</sup> to relate to extreme heat and severe storms. Specific considerations included:

- "...the selection of building materials (e.g. façades, roofing) that are resistant to hail and can withstand strong winds..."
- "...materials and design interventions that will reduce the impact of extreme heat events and urban heat impacts..."
- "Opportunities to reduce the precinct's reliance on grid supplied energy..."
- "...capacity building... to ensure that the community is prepared and know what to do during these events"

The sustainability initiatives outlined in this ESD Plan will help to mitigate climate change and adapt to changing conditions, including addressing resilience recommendations outlined in the AECOM Climate and Community Resilience Assessment report<sup>5</sup>. Some ways in which the initiatives can contribute to climate change adaptation are identified in

<sup>&</sup>lt;sup>3</sup> Source: https://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW

<sup>&</sup>lt;sup>4</sup> Climate and Community Resilience Assessment: Cherrybrook Station Precinct (2019). A report prepared by AECOM for Landcom.

Table 11. Potential impacts of climate change on initiatives and example mitigation considerations

| Key Initiative                                 | Potential contribution of the initiative to adapting to climate change                                                                                                                                                                                                                                                                                                                            | Potential impacts of climate change on the initiative                                                                  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| E1. Greening                                   | <ul> <li>Canopy cover and vertical or roof plantings can create a localised cooling effect that reduces the severity of heatwaves and hot days.</li> <li>Planting arrays can be designed to provide wind breaks for susceptible infrastructure (e.g. solar panels) during storms and extreme wind events.</li> <li>Species selections can consider heat tolerance and fire resilience.</li> </ul> | <ul> <li>Increased plant mortality due to extreme heat</li> <li>Storm damaged plants</li> <li>Bushfire risk</li> </ul> |
| E2. Renewable<br>Energy                        | <ul> <li>Solar panels increase self-sufficiency in energy supply, mitigating the effects of blackouts and brownouts caused by damage to electricity generation or distribution infrastructure during extreme weather events.</li> <li>Solar panels provide independent energy generation infrastructure, which can power critical air conditioning during droughts and hot days.</li> </ul>       | Storm damage     Extreme heat reducing efficiency                                                                      |
| E3. Cool surfaces                              | Contributes to lowering the urban heat island effect, which will be exacerbated during heatwaves and hot days.                                                                                                                                                                                                                                                                                    | Extreme heat impact on<br>integrity of surfaces and<br>cool seal material (e.g. the<br>melting tarmac)                 |
| E4. Natural and low energy lighting            | <ul> <li>Natural or low energy lighting reduces the strain<br/>on the grid during heatwaves and hot days, where<br/>the energy demand typically peaks due to air<br/>conditioning and cooling demand.</li> </ul>                                                                                                                                                                                  | <ul><li>Mains power blackouts</li><li>Storm damage</li></ul>                                                           |
| E5. Active and public transport incentives     | <ul> <li>Public transport provides climate controlled<br/>transportation for vulnerable populations during<br/>droughts, hot days, and other extreme weather<br/>events.</li> </ul>                                                                                                                                                                                                               | <ul><li>Extreme heat risk for users</li><li>Public transport<br/>breakdowns</li></ul>                                  |
| W1. WSUD –<br>stormwater<br>management         | <ul> <li>WSUD features can be designed to help minimise potential flooding impacts (location, capacity)</li> <li>Plantings and permeable paving can help minimise flooding impacts</li> <li>WSUD initiatives can be designed to capture and store rainfall on site for use in irrigation, to provide self-sufficiency during drought.</li> </ul>                                                  | Infrastructure damage from<br>extreme storm events and<br>potential localised flooding                                 |
| W2. Water efficient fixtures and appliances    | Water efficiency measures reduce the demand on<br>the water supply, which creates resilience to<br>drought.                                                                                                                                                                                                                                                                                       | Mains power blackouts                                                                                                  |
| M1. Mass timber buildings                      | Timber buildings can withstand gusty winds, i.e. very strong loads for short durations.                                                                                                                                                                                                                                                                                                           | Fire risk for materials under extreme heat conditions                                                                  |
| M2. Low carbon materials and dematerialisation | Materials with resilience properties and features<br>can be specified to withstand extreme heat and<br>storm conditions                                                                                                                                                                                                                                                                           | Extreme heat/storms may impact material integrity                                                                      |
| M3. Circular economy                           | • N/A                                                                                                                                                                                                                                                                                                                                                                                             | • N/A                                                                                                                  |

# 7 Targets

Measurable and achievable targets (**Table 12**) are proposed for at least each environmental footprint indicator to ensure the Precinct performs better than the footprint baseline calculated in Section 2. The proposed targets are derived from the analysis and research presented throughout this ESD Plan:

- Section 1.5: Sustainability context and literature review the targets consider the overarching policy, planning and strategic context of the Cherrybrook Station SSP, including the NSW Climate Change Framework and Landcom Sustainable Places Strategy.
- **Section 2: Baseline** several targets refer to a 'business as usual' baseline. A high\*level baseline was established in Section 2 of this ESD Plan.
- Section 3: Initiatives potential initiatives to minimise the environmental footprint are identified and their impact on reducing the environmental footprint modelled at a high level to inform the level of ambition of the targets. These initiatives set out a range of options and pathways for designers and construction contractors to achieve the targets.
- Section 4: Net Zero Assessment the findings and drivers of the net zero assessment inform specific emissions reduction targets.

A minimum mandatory target is presented in the table below.

Table 12. Proposed environmental footprint targets for the Precinct

| Indicator                    | # | Metric                                                                                                                                                                                                                                                            | Minimum Target | Justification                                                                                                                                                                                                                                                                                                                  |
|------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste                        | 1 | Diversion of residential waste from landfill during operations                                                                                                                                                                                                    | 50%            | A 70% target for municipal solid waste (MSW) and commercial and industrial waste (C&I) is set by the NSW Waste Avoidance and Resource Recovery Strategy for 2021-22.                                                                                                                                                           |
|                              | 2 | Diversion of construction and demolition waste from landfill during construction and decommissioning                                                                                                                                                              | 95%            | Minimum target is derived<br>from the Landcom<br>Sustainable Places Strategy<br>(Section 1.5.5)                                                                                                                                                                                                                                |
| Energy &<br>GHG<br>emissions | 3 | Reduction in Scope 1 and 2 emissions in the as built Precinct compared to a business-as-usual baseline                                                                                                                                                            | 50%            | Minimum target is derived from the Landcom Sustainable Places Strategy (Section 1.5.5).                                                                                                                                                                                                                                        |
|                              | 4 | Reduction in Scope 1, 2 and 3 greenhouse gas emissions in the as built Precinct compared to a business-asusual baseline. Scope 3 emissions must include construction materials (embodied carbon), waste disposal & processing, and employee & resident commuting. | 20%            | The net zero assessment conducted for this study (Section 4) identified the potential for a 29% reduction based on feasible initiatives.  This target is different from target 3 as it includes scope 3 emissions. Scope 3 emissions represent most of the emissions from of the Precinct as estimated on the modelling (63%). |
|                              | 5 | Reduction in Scope 1 and 2 greenhouse gas emissions                                                                                                                                                                                                               | 100%           | This target is aligned to the NSW Climate Change Policy Framework and NSW's net                                                                                                                                                                                                                                                |

| Indicator | #  | Metric                                                                                                                                                                                    | Minimum Target                                                                                                                                | Justification                                                                                                                                                                                                                                                                                                                      |
|-----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |    | by 2050 compared to a business-as-usual baseline                                                                                                                                          |                                                                                                                                               | zero by 2050 target (Section 1.5)                                                                                                                                                                                                                                                                                                  |
|           | 6  | Tree canopy cover 30 years after the end of construction                                                                                                                                  | A minimum 25% tree canopy (current 10% cover), subject to addressing bushfire protection measures which may limit tree canopy coverage to 15% | Tree canopy cover was considered among the initiatives identified and modelled in Section 3. The draft Greener Places Design Guide (Government Architect NSW) identifies an indicative place-based target of greater than 25 per cent tree canopy cover in urban residential (medium- to high-density)                             |
|           | 7  | % of predicted project energy<br>demand supplied from onsite<br>renewable energy                                                                                                          | 5%                                                                                                                                            | Minimum target is derived<br>from the Landcom<br>Sustainable Places Strategy<br>(Section 1.5.5)                                                                                                                                                                                                                                    |
|           | 8  | All residential dwellings to<br>achieve the following<br>minimum energy ratings:<br>Detached and semi-<br>detached: 60   Low Rise<br>BASIX 45   Mid-Rise BASIX<br>45   High Rise BASIX 40 | N/A                                                                                                                                           | Target is derived from the<br>Landcom Sustainable Places<br>Strategy (Section 1.5.5)                                                                                                                                                                                                                                               |
| Water     | 9  | % reduction in mains potable water use in the built Precinct compared to a business-as-usual baseline                                                                                     | 40% - 50%                                                                                                                                     | 50% target is derived from the Landcom Sustainable Places Strategy (Section 1.5.5).                                                                                                                                                                                                                                                |
|           |    |                                                                                                                                                                                           |                                                                                                                                               | The water-related initiatives modelled in this study demonstrate the potential to achieve a 31% in potable water (Section 3). Achieving higher saving rates is possible as these initiatives does not include all state-of-art initiatives such as some WSUD initiatives, and it does not consider future technology improvements. |
|           | 10 | Residential dwellings to achieve BASIX 60 water rating                                                                                                                                    | N/A                                                                                                                                           | Target is derived from the Landcom Sustainable Places Strategy (Section 1.5.5)                                                                                                                                                                                                                                                     |

Developers can propose frameworks or methodologies to meet the above targets, including but not limited to:

- Green Star rating
- Environmental Product Declaration
- 3<sup>rd</sup> party verified Life Cycle Assessment

# 7.1 Implementation methodology

To ensure that the environmental footprint of the Precinct is reduced throughout its life cycle, sustainability will continue to be considered at each step of the project planning and development process (**Figure 28**). The future planning process will be key to ensuring appropriate sustainability targets are embedded into requirements and integrated as the design progresses. Reviews of sustainability performance and initiatives will be undertaken at relevant intervals, such as:

- Detailed DA Stage
- Tender responses
- Final Green Star rating (if relevant).

Landcom/Sydney Metro may seek to utilise existing sustainability programs, such as BASIX, Green Star and NABERS to provide third-party assurance and industry benchmarking on performance. This ESD Plan is expected to form the foundation for reducing the environmental footprint of the Precinct throughout its life cycle by establishing a baseline and potential initiatives and targets.



Figure 28: Key stages in the planning and development process

# 8 Conclusion

This study addresses the *Study Requirements for Cherrybrook Station Government Land (2020)* items 10.1 and 11.1. This ESD Plan:

- Establishes a baseline environmental footprint for the Cherrybrook Station SSP for water, energy & carbon, and waste & materials.
- Identifies potential initiatives to minimise the Cherrybrook Station SSP's environmental footprint and presents the modelled results of their contribution to reducing the baseline environmental footprint.
- Presents the results of a net zero assessment regarding the pathway and potential for a net zero precinct. Principles and initiatives to address the residual emissions are also outlined in the ESD Plan.
- Outlines the potential interface of the ESD targets and initiatives with the Green Star Communities and Homes Rating and climate change adaptation goals.
- Presents ESD targets to minimise the environmental footprint of the Cherrybrook Station SSP throughout design, construction, and operation.

The key findings of the ESD Plan include:

- Baseline environmental footprint:
  - Energy & Carbon: most of the emissions are located within scope 3, accounting for 63% of the total, while scope 1 and scope 2 (direct emissions) accounts for 6% and 31%, respectively.
  - Water: 72% of life cycle water consumption is associated with dwellings, 24% with public amenities, 3% with commercial spaces, and less than 1% with precinct infrastructure.
  - Materials: Reinforcing steel (28%), aluminium (28%), and structural concrete (25%) account for most of the embodied emissions.
  - Waste: Over the Precinct's lifespan, 57% of waste is projected to be generated by commercial areas, 42% by residents, and the balance by public amenities and offices approximately 1%).
- **Initiatives**: 10 initiatives (with several sub-initiatives) to reduce the whole of life environmental footprint were identified. These initiatives were modelled to reduce life cycle scope 1 2 and 3 emissions by 30% and potable water use by 31%.
- **Net zero assessment:** approximately 30% of the Cherrybrook Station SSP scope 1, 2 and 3 emissions can be mitigated through feasible initiatives modelled at a high level for this study.

The ESD Plan establishes 10 targets to reduce the environmental footprint of the Cherrybrook Station SSP throughout design, construction, and operation (refer to **Table 12**). It is recommended that these targets are considered in the proceeding steps of the planning and development process. The future planning process will be key to ensuring appropriate sustainability targets are embedded into requirements and integrated as the design progresses.

# **Appendix A. Energy and GHG Model**

# Construction

|                            |                                      |       | Electricity |                              |        | Diesel |                              |      | Gas  |                              |                          |     |                             |     | Scope 1, 2 & |                                                             |                                                                    |
|----------------------------|--------------------------------------|-------|-------------|------------------------------|--------|--------|------------------------------|------|------|------------------------------|--------------------------|-----|-----------------------------|-----|--------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| Description                | Project component                    | Rate  | Rate Unit   | Total<br>consumption<br>(kV) | Rate   | Unit   | Total<br>consumption<br>(kL) | Rate | Unit | Total<br>consumption<br>(MJ) | Total Energy<br>Use (MJ) |     | Scope 2 GHG<br>(ton CO2-eq) |     | 2 CHC 0      | Assumptions                                                 | Reference                                                          |
| Office spaces              | Offices                              | 64.50 | MJ/m2       | 8,958                        | 150.50 | MJ/m2  | 2                            | -    | na   |                              | 32,325                   | 5   | 7                           | 1   | 14           | 70% diesel, 30% electricity                                 | Cole R J (1999)                                                    |
| Residential spaces         | Dwellings                            | 64.50 | MJ/m2       | 597,521                      | 150.50 | MJ/m2  | 130                          | -    | na   |                              | 2,156,094                | 352 | 490                         | 78  |              | 70% diesel, 30% electricity                                 | Cole R J (1999)                                                    |
| Commercial spaces (retail) | Commercial / retail spaces           | 64.50 | MJ/m2       | 57,333                       | 150.50 | MJ/m2  | 12                           | -    | na   |                              | 206,882                  | 34  | 47                          | 7   |              | 70% diesel, 30% electricity                                 | Cole R J (1999)                                                    |
| Indoor public amenities    | Indoor / outdoor public<br>amenities | 64.50 | MJ/m2       | 23,292                       | 150.50 | MJ/m2  | 5                            | -    | na   | -                            | 84,046                   | 14  | 19                          | 3   | 36           | 70% diesel, 30% electricity (assumed as a commercial space) | Cole R J (1999)                                                    |
| Green areas                | Indoor / outdoor public<br>amenities | -     | na          | -                            | 1.20   | L/m3   | 28                           | -    | nə   | -                            | 1,068                    | 75  | -                           | 4   | 79           | Only earthworks - strip and respread topsoil (1m depth)     | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Streets 6m wide            | Infrastructure                       | -     | na          | -                            | 1.69   | L/m2   | -                            | -    | na   | -                            | -                        | -   |                             |     |              | Only pavement - Full depth asphalt                          | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Cycleways 2m wide (m)      | Infrastructure                       |       | na          | -                            | 0.73   | L/m2   | 1                            | -    | na   | -                            | 28                       | 2   | -                           | 0   | 2            | Bike path - asphalt                                         | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Footpaths 2m wide (m)      | Infrastructure                       | -     | na          | -                            | 2.00   | L/m2   | 2                            | -    | na   | -                            | 77                       | 5   |                             | 0   | 6            | Block paved footpaths                                       | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Drainage                   | Infrastructure                       | -     | na          | -                            | 45.60  | L/m    | 23                           | -    | na   | -                            | 880                      | 62  |                             | 3   | 65           | Medium 450-750 RCP + Semi-mountable kerb                    | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Sewage                     | Infrastructure                       | -     | na          | -                            | 45.00  | L/m    |                              | -    | na   | -                            | 869                      | 61  | -                           | 3   |              | As drainage -Medium 450-750 RCP                             | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Total                      |                                      |       |             | 687.104                      |        |        | 225                          |      |      | _                            | 2.482.268                | 610 | 563                         | 100 | 1.274        |                                                             |                                                                    |

#### Operation and Maintenance

|                                                                  |                                   |          | Electricity |                              | Di   | esel / Pet  | rol                          |          | Gas       |                              |                           |               |                             |                  | Scope 1, 2 &          |                                                                                                                                                                                                  |                                                                                                                                          |
|------------------------------------------------------------------|-----------------------------------|----------|-------------|------------------------------|------|-------------|------------------------------|----------|-----------|------------------------------|---------------------------|---------------|-----------------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Activity                                                         | Project component                 | Rate     | Rate Unit   | Total<br>consumption<br>(kV) | Rate | Unit        | Total<br>consumption<br>(kL) | Rate     | Unit      | Total<br>consumption<br>(MJ) | Total Energy<br>Use (MJ)  |               | Scope 2 GHG<br>(ton CO2-eq) |                  | 3 GHG (ton<br>CO2-eq) | Assumptions                                                                                                                                                                                      | Reference                                                                                                                                |
| Offices consumption                                              | Offices                           | 321.35   | kWh/m2      | 160,675                      | na   | nə          |                              | 128.54   | MJ/m2     | 64,270                       | 642,638                   | 3             | 132                         | 17               | 152                   | 3 Stars Nabers Energy rating for 50h/week of occupancy,<br>10 computers/ 100 sqm, 10% electricity, 10% gas                                                                                       | NABERS Energy for offices Reverse Calculator v12                                                                                         |
| Residents consumption                                            | Dwellings                         | 1,798.67 | kWh/person  | 1,618,800                    | na   | na          | -                            | 8,129.00 | MJ/person | 7,316,100                    | 13,143,780                | 377           | 1,327                       | 256              | 1,960                 | 3 person household, with gas heater, no pool                                                                                                                                                     | https://www.energymadeeasy.gov.au/benchmark (retrieved on.<br>11/08/2020)                                                                |
| Commercial consumption (retail)                                  | Commercial / retail spaces        | 37.44    | kWh/m2      | 119,792                      | nə   | na          | -                            | 14.97    | MJ/m2     | 47,917                       | 479,168                   | 2             | 98                          | 13               | 113                   | 3 Stars Nabers Energy rating for 61h/week of service.<br>Single storey, 360 trading days, no parking, no other<br>amenities, 1000m2, 90% electricity, 10% gas                                    | NABERS Energy and Water for shopping centres Reverse<br>Calculator v6.0                                                                  |
| Indoor public amenities                                          | Indoor / outdoor public amenities | 38.44    | kWh/m2      | 49,966                       | nə   | na          |                              | 14.97    | MJ/m3     | 19,466                       | 199,342                   | 1             | 41                          | 5                | 47                    | (Assumed as a commercial space) 3 Stars Nabers Energy<br>rating for 6th/week of service. Single storey, 360 trading<br>days, no parking, no other amenities, 1000m2, 90%<br>electricity, 10% gas | NABERS Energy and Water for shopping centres Reverse<br>Calculator v6.0                                                                  |
| Street lighting                                                  | Infrastructure                    | 600.00   | kWh/m       |                              | na   | nə          |                              | na .     | no.       | -                            |                           | -             |                             |                  |                       | Underpasses (municipal road)                                                                                                                                                                     | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects                                                                       |
| Cycleways and footpaths lightening                               | Infrastructure                    | 600.00   | kWh/m       | 600,000                      | na   | na          |                              | na -     | na        |                              | 2,160,000                 |               | 432                         | 60               | 552                   | Underpasses (municipal road), double street lights                                                                                                                                               | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects                                                                       |
| Streets 6m wide maintenance                                      | Infrastructure                    |          | no.         |                              | 0.43 | L/m2        |                              |          | no.       | -                            |                           |               |                             |                  |                       | Full Depth Asphalt                                                                                                                                                                               | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects                                                                       |
| Residents car travel (all types of travel, driver and passenger) | Dwellings                         | -        | na          | -                            | 0.13 | L petrol/km | 776                          |          | na        |                              | 26,552                    | -             | -                           | 1,936            | 1,936                 | 2.075 car trips (driver)/resident-day, 8.5km average distance, only residents, Scope 3                                                                                                           | TfNSW, Household Travel Survey - Data by LGA 2018/2019<br>(Hornsby) / Budget Direct, Average fuel consumption in Australia<br>2020       |
| Employees car commute (driver and passenger)                     | Commercial / retail spaces        | -        | na          | -                            | 0.13 | L petrol/km | 128                          |          | na        |                              | 4,375                     | -             | -                           | 319              | 319                   | 15.3km average distance each way, 260 days a year, only employees, Scope 3                                                                                                                       | TfNSW, Household Travel Survey - Data by LGA 2018/2019<br>(Sydney Region) / Budget Direct, Average fuel consumption in<br>Australia 2021 |
| Total (annual) Total (50 years)                                  |                                   |          |             | 2,549,232<br>127,461,600     |      |             | 904<br>45,216                |          |           | 7,447,753<br>372,387,625     | 16,655,915<br>832,795,768 | 384<br>19,189 | 2,090<br>104,519            | 2,605<br>130,244 | 5,079<br>253,952      |                                                                                                                                                                                                  |                                                                                                                                          |

Demolition / refurbishment

|                         |                                      |      | Electricit |                        |      | Diesel |                              |      | Gas  |                              |                          |                             |                             |    | Scope 1, 2 &          |                                                                   |                                                                    |
|-------------------------|--------------------------------------|------|------------|------------------------|------|--------|------------------------------|------|------|------------------------------|--------------------------|-----------------------------|-----------------------------|----|-----------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| Description             | Project component                    | Rate | Rate Unit  | Total consumption (kV) | Rate | Unit   | Total<br>consumption<br>(kL) | Rate | Unit | Total<br>consumption<br>(MJ) | Total Energy<br>Use (MJ) | Scope 1 GHG<br>(ton CO2-eq) | Scope 2 GHG<br>(ton CO2-eq) |    | 3 GHG (ton<br>CO2-eq) | Assumptions                                                       | Reference                                                          |
| Office spaces           | Offices                              | na   | na         | -                      | 4.80 | L/m2   | 2                            | no   | nə   | -                            | 93                       | 7                           | -                           | 0  | '                     | Only diesel - Assuming that 4.8L of diesel is required per m2 GFA | Projects                                                           |
| Residential spaces      | Dwellings                            | na   | no.        | -                      | 4.80 | L/m2   | 160                          | no   | nə   | -                            | 6,179                    | 434                         | -                           | 22 | 456                   | Only diesel - Assuming that 4.8L of diesel is required per m2 GFA | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Commercial spaces       | Commercial / retail spaces           | na   | na         | -                      | 4.80 | L/m2   | 15                           | no   | nə   | -                            | 593                      | 42                          |                             | 2  | 44                    | Only diesel - Assuming that 4.8L of diesel is required per m2 GFA | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Indoor public amenities | Indoor / outdoor public<br>amenities | na   | na         | -                      | 4.80 | L/m3   | 6                            | no   | nə   | 1                            | 241                      | 17                          |                             | 1  | 18                    | Only diesel - Assuming that 4.8L of diesel is required per m2 GFA | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Infrastructure          | Infrastructure                       | na   | no         | -                      | 4.80 | L/m2   | 10                           | no   | nə   | -                            | 371                      | 26                          |                             | 1  | 27                    | Only diesel - Assuming that 4.8L of diesel is required per m2 GFA | TAGG 2013, Greenhouse Gas Assessment Workbook for Road<br>Projects |
| Total                   |                                      |      |            | -                      |      |        | 194                          |      |      | -                            | 7,476                    | 525                         | -                           | 27 | 552                   |                                                                   |                                                                    |

## Construction

| Description                | Project component                    | Rate   | Rate unit  | Total consumption (kL) | Potable<br>water (%) | Non-potable water (%) | Potable water (kL) | Non-potable water<br>(kL) | Assumptions                                                                                                                                                                                                                                        | Reference                                                                                      |
|----------------------------|--------------------------------------|--------|------------|------------------------|----------------------|-----------------------|--------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Office spaces              | Offices                              | 0.26   | L/m2/week  | 10                     | 100%                 | 0%                    | 10                 |                           | 18 months construction (78 weeks)                                                                                                                                                                                                                  | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June 2013                |
| Residential spaces         | Dwellings                            | 0.26   | L/m2/week  |                        |                      |                       | 10                 |                           |                                                                                                                                                                                                                                                    | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June                     |
|                            |                                      |        |            | 669                    | 100%                 | 0%                    | 669                | -                         | 18 months construction (78 weeks)                                                                                                                                                                                                                  | 2013 WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June                |
| Commercial spaces (retail) | Commercial / retail spaces           | 0.26   | L/m2/week  | 64                     | 100%                 | 0%                    | 64                 | -                         | 18 months construction (78 weeks)                                                                                                                                                                                                                  | 2013                                                                                           |
| Indoor public amenities    | Indoor / outdoor public<br>amenities | 0.26   | L/m2/week  | 26                     | 100%                 | 0%                    | 26                 | -                         | 18 months construction (78 weeks)                                                                                                                                                                                                                  | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June 2013                |
| Green areas                | Indoor / outdoor public amenities    | 0.74   | kL-year/m2 | 4,270                  | 100%                 | 0%                    | 4,270              | -                         | (1 year consumption for establishment watering) 20% undercover, evapotranspiration from BoM and other Green Start standard practice assumptions: application efficiency (75%), monthly rainfall, crop coefficient (0.6) + earthworks ( $100L/m2$ ) | ,<br>Green Star, Potable Water Calculator 14102015 / Australian Bureau of<br>Meteorology (BoM) |
| Streets 6m wide            | Infrastructure                       | 216.00 | L/m2       | -                      | 100%                 | 0%                    | -                  |                           | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                                 | Victoria Roads - Integrated Water Management Guidelines June 2013                              |
| Cycleways 2m wide (m)      | Infrastructure                       | 216.00 | L/m2       | 216                    | 100%                 |                       | 216                |                           | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                                 | Victoria Roads - Integrated Water Management Guidelines June 2013                              |
| Footpaths 2m wide (m)      | Infrastructure                       | 216.00 | L/m2       | 216                    | 100%                 | 0%                    | 216                |                           | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                                 | Victoria Roads - Integrated Water Management Guidelines June 2013                              |
| Drainage                   | Infrastructure                       | 1.60   | L/m        | 1                      | 100%                 | 0%                    | 1                  |                           | Drainage cleaning                                                                                                                                                                                                                                  | Victoria Roads - Integrated Water Management Guidelines June 2013                              |
| Sewage                     | Infrastructure                       | 2.60   | L/m        | 1                      | 100%                 | 0%                    | 1                  |                           | Sewage cleaning (Drainage cleaning)                                                                                                                                                                                                                | Victoria Roads - Integrated Water Management Guidelines June 2013                              |
| Total                      |                                      |        |            | 5,473                  |                      |                       | 5,473              | -                         |                                                                                                                                                                                                                                                    |                                                                                                |

# Operation and Maintenance

| Description                    | Project component                    | Rate  | Rate unit      | Annual consumption | Potable   | Non-potable | Potable water | Non-potable water | Assumptions                                                                                                                                                              | Reference                                                                                                                      |
|--------------------------------|--------------------------------------|-------|----------------|--------------------|-----------|-------------|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| beacription                    | 1 Toject component                   | Nate  | Nate unit      | (kL)               | water (%) | water (%)   | (kL)          | (kL)              | Assumptions                                                                                                                                                              | Reference                                                                                                                      |
| Office spaces                  | Offices                              | 1.02  | kL-year/m2     | 511                | 100%      | 0%          | 511           | -                 | 3 Stars Nabers Water rating for 50h/week of occupancy                                                                                                                    | NABERS Water for Offices Reverse Calculator v1.0                                                                               |
| Residential spaces             | Dwellings                            | 58.62 | kl-year/person | 52,758             | 100%      | 0%          | 52,758        | _                 | Average according to Sydney Water (all seasons)                                                                                                                          | https://www.sydneywater.com.au/SW/your-home/using-water-wisely/water-<br>efficiency-targets/index.htm/retrieved.on/1/109/2020) |
| Commercial spaces (retail)     | Commercial / retail spaces           | 0.71  | kL-year/m2     | 2,269              | 100%      | 0%          | 2,269         | -                 | 3 Stars Nabers Water rating for $61h/w$ eek of service. Single storey, $360$ trading days, no parking no other amenities, $1000m2$                                       | NABERS Energy and Water for shopping centres Reverse Calculator v6.0                                                           |
| Indoor public amenities        | Indoor / outdoor public<br>amenities | 0.71  | kL-year/m2     | 922                | 100%      | 0%          | 922           | -                 | Considered a commercial spaces – 3 Stars Nabers Water rating for 61h/week of service. Single storey, 360 trading days, no parking, no other amenities, 1000m2            | NABERS Energy and Water for shopping centres Reverse Calculator v6.0                                                           |
| Green areas                    | Indoor / outdoor public<br>amenities | 0.64  | kL-year/m2     | 16,344             | 100%      | 0%          | 16,344        | _                 | 20% undercover, evapotranspiration from BoM, and other Green Start standard practice assumptions: application efficiency (75%), monthly rainfall, crop coefficient (0.6) | Green Star, Potable Water Calculator 14102015 / Australian Bureau of Meteorology (BoM)                                         |
| Streets 6m wide cleaning       | Infrastructure                       | 7.00  | L/m2           | -                  | 100%      | 0%          | -             |                   | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                              |
| Cycleways 2m wide (m) cleaning | Infrastructure                       | 7.00  | L/m2           | 42                 | 100%      | 0%          | 42            |                   | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                              |
| Footpaths 2m wide (m) cleaning | Infrastructure                       | 7.00  | L/m2           | 42                 | 100%      | 0%          | 42            |                   | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                              |
| Drainage cleaning              | Infrastructure                       | 1.60  | L/m            | 10                 | 100%      | 0%          | 10            |                   | Drainage cleaning (12 times per year)                                                                                                                                    | Victoria Roads - Integrated Water Management Guidelines June 2013                                                              |
| Total (annual)                 |                                      |       |                | 72,897             |           | 0%          | 72,897        | -                 |                                                                                                                                                                          |                                                                                                                                |
| Total (50 years)               |                                      |       |                | 3,644,848          |           |             | 3,644,848     | -                 |                                                                                                                                                                          |                                                                                                                                |

## 40,657

# Demolition /refurbishment

| Description                | Component                            | Rate   | Rate unit | Total consumption (kL) | Potable<br>water (%) | Non-potable water (%) | Potable water<br>(kL) | Non-potable water<br>(kL) |                               | Assumptions | Reference                                                         |
|----------------------------|--------------------------------------|--------|-----------|------------------------|----------------------|-----------------------|-----------------------|---------------------------|-------------------------------|-------------|-------------------------------------------------------------------|
| Office spaces              | Offices                              | 105.00 | L/m2      | 53                     | 100%                 | 0%                    | 53                    | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Residential spaces         | Dwellings                            | 105.00 | L/m2      | 3,502                  | 100%                 | 0%                    | 3,502                 | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Commercial spaces (retail) | Commercial / retail spaces           | 105.00 | L/m2      | 336                    | 100%                 | 0%                    | 336                   | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Indoor public amenities    | Indoor / outdoor public<br>amenities | 105.00 | L/m2      | 137                    | 100%                 | 0%                    | 137                   | _                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Green areas                | Indoor / outdoor public<br>amenities | 105.00 | L/m2      | 2,420                  | 100%                 | 0%                    | 2,420                 | _                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Streets 6m wide            | Infrastructure                       | 105.00 | L/m2      | -                      | 100%                 | 0%                    | -                     | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Cycleways 2m wide (m)      | Infrastructure                       | 105.00 | L/m2      | 105                    | 100%                 | 0%                    | 105                   | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Footpaths 2m wide (m)      | Infrastructure                       | 105.00 | L/m2      | 105                    | 100%                 | 0%                    | 105                   | -                         | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Total                      |                                      |        |           | 6,657                  |                      |                       | 6,657                 | -                         |                               |             |                                                                   |

# **Appendix B. Water Model**

# Construction

| Description                  | Project component                 | Rate   | Rate unit   | Total consumption (kL) | Potable<br>water (%) | Non-potable water (%) | Potable water (kL) | Non-potable water (kL) | Assumptions                                                                                                                                                                                                                                     | Reference                                                                              |
|------------------------------|-----------------------------------|--------|-------------|------------------------|----------------------|-----------------------|--------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Office spaces                | Offices                           | 0.26   | L/m2/week   | 40                     | 4000/                | 201                   | 40                 |                        | 40 4 5 70 1                                                                                                                                                                                                                                     | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June             |
| ·                            |                                   |        |             | 10                     | 100%                 | 0%                    | 10                 | •                      | 18 months construction (78 weeks)                                                                                                                                                                                                               | 2013                                                                                   |
| Residential spaces           | Dwellings                         | 0.26   | L/m2/week   |                        |                      |                       |                    |                        |                                                                                                                                                                                                                                                 | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June             |
|                              | - ··-·····g-                      |        |             | 756                    | 100%                 | 0%                    | 756                | -                      | 18 months construction (78 weeks)                                                                                                                                                                                                               | 2013                                                                                   |
| Commercial spaces (retail)   | Commercial / retail spaces        | 0.26   | L/m2/week   |                        |                      |                       |                    |                        |                                                                                                                                                                                                                                                 | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June             |
| Commercial spaces (retail)   | Commercial/ retail spaces         | 0.20   | L/IIIZ/WEEK | 58                     | 100%                 | 0%                    | 58                 | -                      | 18 months construction (78 weeks)                                                                                                                                                                                                               | 2013                                                                                   |
| Landa and and the constraint | Indoor / outdoor public           | 0.26   | 1 / 0/1-    |                        |                      |                       |                    |                        |                                                                                                                                                                                                                                                 | WRAP (2011) / Victoria Roads - Integrated Water Management Guidelines June             |
| Indoor public amenities      | amenities                         | 0.26   | L/m2/week   | 26                     | 100%                 | 0%                    | 26                 | -                      | 18 months construction (78 weeks)                                                                                                                                                                                                               | 2013                                                                                   |
| Green areas                  | Indoor / outdoor public amenities | 0.74   | kL-year/m2  | 7,287                  | 100%                 | 0%                    | 7,287              | -                      | (1 year consumption for establishment watering) 20% undercover, evapotranspiration from BoM, and other Green Start standard practice assumptions: application efficiency (75%), monthly rainfall, crop coefficient (0.6) + earthworks (100L/m2) | Green Star, Potable Water Calculator 14102015 / Australian Bureau of Meteorology (BoM) |
| Streets 6m wide              | Infrastructure                    | 216.00 | L/m2        | 648                    | 100%                 | 0%                    | 648                |                        | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                              | Victoria Roads - Integrated Water Management Guidelines June 2013                      |
| Cycleways 2m wide (m)        | Infrastructure                    | 216.00 | L/m2        | 216                    | 100%                 | 0%                    | 216                |                        | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                              | Victoria Roads - Integrated Water Management Guidelines June 2013                      |
| Footpaths 2m wide (m)        | Infrastructure                    | 216.00 | L/m2        | 216                    | 100%                 | 0%                    | 216                |                        | Pavement layer compaction and sub-grade compaction                                                                                                                                                                                              | Victoria Roads - Integrated Water Management Guidelines June 2013                      |
| Drainage                     | Infrastructure                    | 1.60   | L/m         | 1                      | 100%                 | 0%                    | 1                  |                        | Drainage cleaning                                                                                                                                                                                                                               | Victoria Roads - Integrated Water Management Guidelines June 2013                      |
| Sewage                       | Infrastructure                    | 2.60   | L/m         | 1                      | 100%                 | 0%                    | 1                  |                        | Sewage cleaning (Drainage cleaning)                                                                                                                                                                                                             | Victoria Roads - Integrated Water Management Guidelines June 2013                      |
| Total                        |                                   |        |             | 9,220                  |                      |                       | 9,220              |                        |                                                                                                                                                                                                                                                 |                                                                                        |

# Operation and Maintenance

| Description                    | Project component                 | Rate  | Rate unit      | Annual consumption (kL) | Potable<br>water (%) | Non-potable water (%) | Potable water (kL) | Non-potable water (kL) | Assumptions                                                                                                                                                              | Reference                                                                                                                   |
|--------------------------------|-----------------------------------|-------|----------------|-------------------------|----------------------|-----------------------|--------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Office spaces                  | Offices                           | 1.02  | kL-year/m2     | 511                     | 100%                 | 0%                    | 511                | -                      | 3 Stars Nabers Water rating for 50h/week of occupancy                                                                                                                    | NABERS Water for Offices Reverse Calculator v1.0                                                                            |
| Residential spaces             | Dwellings                         | 58.62 | kl-year/person | 59,851                  | 100%                 | 0%                    | 59,851             | _                      | Average according to Sydney Water (all seasons)                                                                                                                          | https://www.sydneywater.com.au/SW/your-home/using-water-wisely/water-efficiency-targets/index.htm (retrieved on 11/09/2020) |
| Commercial spaces (retail)     | Commercial / retail spaces        | 0.71  | kL-year/m2     | 2,057                   | 100%                 | 0%                    | 2,057              | -                      | 3 Stars Nabers Water rating for 61h/week of service. Single storey, 360 trading days, no parking no other amenities, 1000m2                                              | NABERS Energy and Water for shopping centres Reverse Calculator v6.0                                                        |
| Indoor public amenities        | Indoor / outdoor public amenities | 0.71  | kL-year/m2     | 922                     | 100%                 | 0%                    | 922                | -                      | Considered a commercial spaces - 3 Stars Nabers Water rating for 61h/week of service. Single storey, 360 trading days, no parking, no other amenities, 1000m2            | NABERS Energy and Water for shopping centres Reverse Calculator v6.0                                                        |
| Green areas                    | Indoor / outdoor public amenities | 0.64  | kL-year/m2     | 27,895                  | 100%                 | 0%                    | 27,895             | -                      | 20% undercover, evapotranspiration from BoM, and other Green Start standard practice assumptions: application efficiency (75%), monthly rainfall, crop coefficient (0.6) | Green Star, Potable Water Calculator 14102015 / Australian Bureau of Meteorology (BoM)                                      |
| Streets 6m wide cleaning       | Infrastructure                    | 7.00  | L/m2           | 126                     | 100%                 | 0%                    | 126                |                        | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                           |
| Cycleways 2m wide (m) cleaning | Infrastructure                    | 7.00  | L/m2           | 42                      | 100%                 | 0%                    | 42                 |                        | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                           |
| Footpaths 2m wide (m) cleaning | Infrastructure                    | 7.00  | L/m2           | 42                      | 100%                 | 0%                    | 42                 |                        | Pavement cleaning (6 times per year)                                                                                                                                     | Victoria Roads - Integrated Water Management Guidelines June 2013                                                           |
| Drainage cleaning              | Infrastructure                    | 1.60  | L/m            | 10                      | 100%                 | 0%                    | 10                 |                        | Drainage cleaning (12 times per year)                                                                                                                                    | Victoria Roads - Integrated Water Management Guidelines June 2013                                                           |
| Total (annual)                 |                                   |       |                | 91,455                  |                      | 0%                    | 91,455             | -                      |                                                                                                                                                                          |                                                                                                                             |
| Total (50 years)               |                                   |       |                | 4,572,751               |                      |                       | 4,572,751          |                        |                                                                                                                                                                          |                                                                                                                             |

45,994

## Demolition /refurbishment

| Description                | Component                         | Rate   | Rate unit | Total consumption (kL) | Potable water (%) | Non-potable water (%) | Potable water (kL) | Non-potable water (kL) |                               | Assumptions | Reference                                                         |
|----------------------------|-----------------------------------|--------|-----------|------------------------|-------------------|-----------------------|--------------------|------------------------|-------------------------------|-------------|-------------------------------------------------------------------|
| Office spaces              | Offices                           | 105.00 | L/m2      | 53                     | 100%              | 0%                    | 53                 | -                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Residential spaces         | Dwellings                         | 105.00 | L/m2      | 3,961                  | 100%              | 0%                    | 3,961              |                        | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Commercial spaces (retail) | Commercial / retail spaces        | 105.00 | L/m2      | 305                    | 100%              | 0%                    | 305                | -                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Indoor public amenities    | Indoor / outdoor public amenities | 105.00 | L/m2      | 137                    | 100%              | 0%                    | 137                | _                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Green areas                | Indoor / outdoor public amenities | 105.00 | L/m2      | 4,131                  | 100%              | 0%                    | 4,131              | -                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Streets 6m wide            | Infrastructure                    | 105.00 | L/m2      | 315                    | 100%              | 0%                    | 315                | -                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Cycleways 2m wide (m)      | Infrastructure                    | 105.00 | L/m2      | 105                    | 100%              | 0%                    | 105                |                        | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Footpaths 2m wide (m)      | Infrastructure                    | 105.00 | L/m2      | 105                    | 100%              | 0%                    | 105                | -                      | Cleaning and dust suppression |             | Victoria Roads - Integrated Water Management Guidelines June 2013 |
| Total                      |                                   |        |           | 9,111                  |                   |                       | 9,111              | -                      |                               |             |                                                                   |

# **Appendix C. Waste Model**

Municipal Solid Waste

| Description        | Project component | Residents | Generation Rate<br>(ton/resident) | Annual generation<br>(tonnes) | Diversion rate | ₩aste<br>disposed to<br>landfill (tonnes) | Emission<br>factors (ton<br>CO2-eq/ton<br>waste) | GHG Emissions<br>(ton CO2-eq) | Assumptions                                                                                             | Reference                                                                                                                                                                                                                                     |
|--------------------|-------------------|-----------|-----------------------------------|-------------------------------|----------------|-------------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residential spaces | Dwellings         | 900.00    | 0.56                              | 504                           | 44%            | 282                                       | 1.4                                              |                               | Generation rate from the National Waste Report and diversion rate from Resource<br>Recovery Survey Data | Department of the Environment and Energy. National Waste Report 2018/<br>NSW EPA. 2018-13 Local Government Waste and Resource Recovery<br>Data Report/ Department of the Environment and Energy. National<br>Greenhouse Accounts Factors 2013 |
| Total (annual)     |                   |           |                                   | 504                           |                | 282                                       |                                                  | 395                           |                                                                                                         |                                                                                                                                                                                                                                               |
| Total (50 years)   |                   |           |                                   | 25,200                        |                | 14,112                                    |                                                  | 19,757                        |                                                                                                         |                                                                                                                                                                                                                                               |

## Commercial and Industry

| Description                        | Project component                 | EFTE | Generation Rate<br>(ton/EFTE) | Annual generation (tonnes) | Diversion rate | ₩aste<br>disposed to<br>landfill (tonnes) | Emission<br>factors (ton<br>CO2-eq/ton<br>waste) | GHG Emissions<br>(ton CO2-eq) | Assumptions                                                                                                                                              | Reference                                                                                                                                                    |
|------------------------------------|-----------------------------------|------|-------------------------------|----------------------------|----------------|-------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office spaces                      | Offices                           | 35   | 0.3                           | 11                         | 62%            | 4                                         | 1.2                                              | 4.8                           | Retail Trade (Other Store-Based Retailing)/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014-21)                    | Department of the Environment and Energy. National Waste Report 2018  / Department of the Environment and Energy. National Greenhouse  Accounts Factors 2019 |
| Commercial spaces (retail)         | Commercial / retail spaces        | 220  | 3.1                           | 682                        | 62%            | 259                                       | 1.2                                              | 311.0                         | Professional, Soientific and Technical Services/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014–21)               | Department of the Environment and Energy, National Waste Report 2018 / Department of the Environment and Energy, National Greenhouse Accounts Factors 2019   |
| Indoor public amenities            | Indoor / outdoor public amenities | 12   | 0.3                           | 4                          | 62%            | 1                                         | 1.2                                              | 1.6                           | Public Administration and Safety (Other Store-Based Retailing/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014-21) | Department of the Environment and Energy, National Waste Report 2018  / Department of the Environment and Energy, National Greenhouse Accounts Factors 2019  |
| Total (annual)<br>Total (50 years) |                                   |      |                               | 696<br>34,805              |                | 265<br>13,226                             |                                                  | 317<br>15,871                 |                                                                                                                                                          |                                                                                                                                                              |

| Description        | Project component | Residents | Generation Rate (ton/resident) | Annual generation (tonnes) | Diversion rate | Waste disposed<br>to landfill<br>(tonnes) | Emission<br>factors (ton<br>CO2-eq/ton<br>waste) | GHG Emissions (ton CO2-eq) | Assumptions | Reference                                                                                                                                                                                                                            |
|--------------------|-------------------|-----------|--------------------------------|----------------------------|----------------|-------------------------------------------|--------------------------------------------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residential spaces | Dwellings         | 1,021.00  | 0.56                           | 572                        | 44%            | 320                                       | 1.4                                              | 448.3                      |             | Department of the Environment and Energy. National Waste Report 2018/ NSW EPA. 2018-19 Local Government Waste and Resource Recovery Data Report/ Department of the Environment and Energy. National Greenhouse Accounts Factors 2019 |
| Total (annual)     |                   |           |                                | 572                        |                | 320                                       |                                                  | 448                        |             |                                                                                                                                                                                                                                      |

# **Commercial and Industry**

Municipal Solid Waste

| Description                     | Project component                 | EFTE | Generation Rate<br>(ton/EFTE) | Annual generation (tonnes) | Diversion rate | Waste disposed<br>to landfill<br>(tonnes) | Emission<br>factors (ton<br>CO2-eq/ton<br>waste) | GHG Emissions (ton<br>CO2-eq) | Assumptions                                                                                                                                               | Reference                                                                                                                                                        |
|---------------------------------|-----------------------------------|------|-------------------------------|----------------------------|----------------|-------------------------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office spaces                   | Offices                           | 35   | 0.3                           | 11                         | 62%            | 4                                         | 1.2                                              |                               | Retail Trade (Other Store- Based Retailing)/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014–21)                    | Department of the Environment and Energy. National Waste Report 2018 / Department of the Environment and Energy. National Greenhouse Accounts Factors 2019       |
| Commercial spaces (retail)      | Commercial / retail spaces        | 220  | 3.1                           | 682                        | 62%            | 259                                       | 1.2                                              |                               | Professional, Scientific and Technical Services/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014–21)                | Department of the Environment and Energy. National Waste Report 2018 /<br>Department of the Environment and Energy. National Greenhouse Accounts<br>Factors 2019 |
| Indoor public amenities         | Indoor / outdoor public amenities | 12   | 0.3                           | 4                          | 62%            | 1                                         | 1.2                                              |                               | Public Administration and Safety (Other Store- Based Retailing/ Diversion rate as per target (NSW Waste Avoidance and Resource Recovery Strategy 2014–21) | Department of the Environment and Energy. National Waste Report 2018 / Department of the Environment and Energy. National Greenhouse Accounts Factors 2019       |
| Total (annual) Total (50 years) |                                   |      |                               | 696<br>34,805              |                | 265<br>13,226                             |                                                  | 317<br>15,871                 |                                                                                                                                                           |                                                                                                                                                                  |

# **Appendix D. Materials Model**

# LCIA Assumptions

|                     | Material use pe | er GFA (m2) | Life Cycle Impacts pe                        | r unit of material |                                                       |                                                                 |                                                                                                        |
|---------------------|-----------------|-------------|----------------------------------------------|--------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Material            | Factor          | Unit / m2   | Global warming potential (kg<br>CO2-eq/unit) | Density (kg/m3)    | LCIA Material Selection                               | Other assumptions                                               | Reference                                                                                              |
| Aluminium Façade    | 0.76            | kg          | 41.63                                        | 2,710.00           | Aluminium, primary, at plant/RER U/AusSD U            | EDGE's data                                                     |                                                                                                        |
| Aluminium Other     | 8.10            | kg          | 40.50                                        | 2,710.00           | Aluminium, primary, at plant/RER U/AusSD U            | EDGE's data                                                     |                                                                                                        |
| Concrete Other      | 0.10            | m3          | 405.00                                       | 2,406.00           |                                                       | Non supplementary cementitious materials                        | Holcim Virodeos EPD https://epd-australasia.com/wp-<br>content/uploads/2019/07/Holcim-ViroDeos-EPD.pdf |
| Concrete Structural | 0.73            | m3          | 405.00                                       | 2,406.00           |                                                       | Non supplementary cementitious materials                        | Holcim Virodeos EPD https://epd-australasia.com/wp-<br>content/uploads/2019/07/Holcim-ViroDeos-EPD.pdf |
| Steel Other         | 22.84           | kg          | 6.57                                         | 7,850              | Steel, converter, low-alloyed, at plant/RER U/AusSD U | EDGE's data                                                     |                                                                                                        |
| Steel Reinforcement | 79.30           | kg          | 4.23                                         | 7,850              | Reinforcing steel, at plant/RER U/AusSD U             | EDGE's data                                                     |                                                                                                        |
| Steel Structural    | 7.21            | kg          | 6.20                                         | 7,850              | Rolled steel, structural, at regional store /AUU      | EDGE's data                                                     |                                                                                                        |
| Asphalt             | na              | na          | na                                           | na                 | na                                                    | Estimated in a case by case basis for infrastructure components | ISCA Materials Tool v 1.2 /TAAG Workbook 2013                                                          |
| Aggregate           | na              | na          | na                                           | na                 | na                                                    | Estimated in a case by case basis for infrastructure components | ISCA Materials Tool v 1.2 /TAAG Workbook 2013                                                          |

# Materials impacts

| Description              | Project component                 | Material                   | Quantity     | Unit   | Global warming potential (kg CO2-eq) | Tonnage               | Assumptions               |
|--------------------------|-----------------------------------|----------------------------|--------------|--------|--------------------------------------|-----------------------|---------------------------|
| Office spaces            | Offices                           | Concrete Structural        | 365.09       | m3     | 147,862                              | 878                   |                           |
| Office spaces            | Offices                           | Aluminium Other            | 4,048.03     | kg     | 163,958                              | 4                     |                           |
| Office spaces            | Offices                           | Concrete Other             | 49.01        | m3     | 19,847                               | 118                   |                           |
| ffice spaces             | Offices                           | Steel Reinforcement        | 39,652.04    | kg     | 167,653                              | 40                    |                           |
| fice spaces              | Offices                           | Steel Other                | 11,418.19    | kg     | 75,059                               | 11                    |                           |
| fice spaces              | Offices                           | Aluminium Façade           | 378.23       | kg     | 15,747                               | 0                     |                           |
| sidential spaces         | Dwellings                         | Concrete Structural        | 24,351.57    | m3     | 9,862,387                            | 58,590                |                           |
| sidential spaces         | Dwellings                         | Aluminium Other            | 270,003.63   | kg     | 10,935,974                           | 270                   |                           |
| sidential spaces         | Dwellings                         | Concrete Other             | 3,268.63     | m3     | 1,323,797                            | 7,864                 |                           |
| sidential spaces         | Dwellings                         | Steel Reinforcement        | 2,644,791.36 | kg     | 11,182,450                           | 2,645                 |                           |
| sidential spaces         | Dwellings                         | Steel Other                | 761,593.22   | kg     | 5,006,405                            | 762                   |                           |
| sidential spaces         | Dwellings                         | Aluminium Façade           | 25,228.07    | kg     | 1,050,357                            | 25                    |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Concrete Structural        | 2,336.58     | m3     | 946,316                              | 5,622                 |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Aluminium Other            | 25,907.39    | kg     | 1,049,329                            | 26                    |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Concrete Other             | 313.63       | m3     | 127,021                              | 755                   |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Steel Reinforcement        | 253,773.08   | kg     | 1,072,979                            | 254                   |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Steel Other                | 73,076.41    | kg     | 480,375                              | 73                    |                           |
| mmercial spaces (retail) | Commercial / retail spaces        | Aluminium Façade           | 2,420.68     | kg     | 100,784                              | 2                     |                           |
| oor public amenities     | Indoor / outdoor public amenities | Concrete Structural        | 949.24       | m3     | 384,441                              | 2,284                 |                           |
| oor public amenities     | Indoor / outdoor public amenities | Aluminium Other            | 10,524.88    | kg     | 426,290                              | 11                    |                           |
| oor public amenities     | Indoor / outdoor public amenities | Concrete Other             | 127.41       | m3     | 51,602                               | 307                   |                           |
| oor public amenities     | Indoor / outdoor public amenities | Steel Reinforcement        | 103,095.32   | kg     | 435,898                              | 103                   |                           |
| oor public amenities     | Indoor / outdoor public amenities | Steel Other                | 29,687.29    | kg     | 195,152                              | 30                    |                           |
| oor public amenities     |                                   | Aluminium Façade           | 983.40       | kg     | 40,943                               | 1                     |                           |
| eets 6m wide             | Infrastructure                    | Asphalt (Infrastructure)   | 840.00       | m3     | 128,700                              | 2,016 Quantities from | TAAG: full depth pavement |
| eets 6m wide             | Infrastructure                    | Cement                     | 16.74        | tonnes | 16,600                               | 17 Quantities from    | TAAG: full depth pavement |
| eets 6m wide             | Infrastructure                    | Aggregate (infrastructure) | 3,780.00     | tonnes | 62,600                               | 3,780 Quantities from | TAAG: full depth pavement |
| oleways 2m wide (m)      | Infrastructure                    | Asphalt (Infrastructure)   | 412.00       | m3     | 57,100                               | 989 Quantities from   | TAAG: asphalt cycleway    |
| eleways 2m wide (m)      | Infrastructure                    | Aggregate (infrastructure) | 2,195.00     | tonnes | 36,200                               |                       | n TAAG: asphalt cycleway  |
| otpaths 2m wide (m)      | Infrastructure                    | Asphalt                    | 412.00       | m3     | 57,100                               | 989 Quantities from   | n TAAG: asphalt cycleway  |
| otpaths 2m wide (m)      | Infrastructure                    | Aggregate (infrastructure) | 2,195.00     | tonnes | 36,200                               |                       | TAAG: asphalt cycleway    |

# LCIA Assumptions

|                     | Material use per | GFA (m2)  | Life Cycle Impacts per                        | unit of material |                                                       |                                                                 |                                                                 |
|---------------------|------------------|-----------|-----------------------------------------------|------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| Material            | Factor           | Unit / m2 | Global warming potential (kg CO2-<br>eq/unit) | Density (kg/m3)  | LCIA Material Selection                               | Other assumptions                                               | Reference                                                       |
| Aluminium Façade    | 0.76             | kg        | 41.63                                         | 2,710.00         | Aluminium, primary, at plant/RER U/AusSD U            | EDGE's data                                                     |                                                                 |
| Aluminium Other     | 8.10             | kg        | 40.50                                         | 2,710.00         | Aluminium, primary, at plant/RER U/AusSD U            | EDGE's data                                                     |                                                                 |
| Concrete Other      | 0.10             | m3        | 405.00                                        | 2,406.00         |                                                       | Non supplementary cementitious materials                        | Holcim Virodecs EPD https://epd-australasia.com/wp-content/uplo |
| Concrete Structural | 0.73             | m3        | 405.00                                        | 2,406.00         |                                                       | Non supplementary cementitious materials                        | Holcim Virodecs EPD https://epd-australasia.com/wp-content/uplo |
| Steel Other         | 22.84            | kg        | 6.57                                          | 7,850            | Steel, converter, low-alloyed, at plant/RER U/AusSD U | EDGE's data                                                     |                                                                 |
| Steel Reinforcement | 79.30            | kg        | 4.23                                          | 7,850            | Reinforcing steel, at plant/RER U/AusSD U             | EDGE's data                                                     |                                                                 |
| Steel Structural    | 7.21             | kg        | 6.20                                          | 7,850            | Rolled steel, structural, at regional store /AU U     | EDGE's data                                                     |                                                                 |
| Asphalt             | na               | na        | na                                            | na               | na                                                    | Estimated in a case by case basis for infrastructure components | ISCA Materials Tool v 1.2 /TAAG Workbook 2013                   |
| Aggregate           | na               | na        | na                                            | na               | na                                                    | Estimated in a case by case basis for infrastructure components | ISCA Materials Tool v 1.2 /TAAG Workbook 2013                   |

# Materials impacts

| Description               | Project component                 | Material                   | Quantity     | Unit   | Global warming potential (kg CO2-eq) | Tonnage     | Assumptions                          |
|---------------------------|-----------------------------------|----------------------------|--------------|--------|--------------------------------------|-------------|--------------------------------------|
| Office spaces             | Offices                           | Concrete Structural        | 365.09       | m3     | 147,862                              | 878         |                                      |
| Office spaces             | Offices                           | Aluminium Other            | 4,048.03     | kg     | 163,958                              | 4           |                                      |
| Office spaces             | Offices                           | Concrete Other             | 49.01        | m3     | 19,847                               | 118         |                                      |
| Office spaces             | Offices                           | Steel Reinforcement        | 39,652.04    | kg     | 167,653                              | 40          |                                      |
| Office spaces             | Offices                           | Steel Other                | 11,418.19    | kg     | 75,059                               | 11          |                                      |
| Office spaces             | Offices                           | Aluminium Façade           | 378.23       | kg     | 15,747                               | 0           |                                      |
| esidential spaces         | Dwellings                         | Concrete Structural        | 27,548.31    | m3     | 11,157,065                           | 66,281      |                                      |
| esidential spaces         | Dwellings                         | Aluminium Other            | 305,448.18   | kg     | 12,371,587                           | 305         |                                      |
| esidential spaces         | Dwellings                         | Concrete Other             | 3,697.72     | m3     | 1,497,578                            | 8,897       |                                      |
| esidential spaces         | Dwellings                         | Steel Reinforcement        | 2,991,984.66 | kg     | 12,650,419                           | 2,992       |                                      |
| esidential spaces         | Dwellings                         | Steel Other                | 861,570.88   | kg     | 5,663,618                            | 862         |                                      |
| esidential spaces         | Dwellings                         | Aluminium Façade           | 28,539.87    | kg     | 1,188,242                            | 29          |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Concrete Structural        | 2,118.26     | m3     | 857,895                              | 5,097       |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Aluminium Other            | 23,486.67    | kg     | 951,282                              | 23          |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Concrete Other             | 284.33       | m3     | 115,152                              | 684         |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Steel Reinforcement        | 230,061.16   | kg     | 972,722                              | 230         |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Steel Other                | 66,248.33    | kg     | 435,490                              | 66          |                                      |
| ommercial spaces (retail) | Commercial / retail spaces        | Aluminium Façade           | 2,194.50     | kg     | 91,367                               | 2           |                                      |
| door public amenities     | Indoor / outdoor public amenities | Concrete Structural        | 949.24       | m3     | 384,441                              | 2,284       |                                      |
| door public amenities     | Indoor / outdoor public amenities | Aluminium Other            | 10,524.88    | kg     | 426,290                              | 11          |                                      |
| door public amenities     | Indoor / outdoor public amenities | Concrete Other             | 127.41       | m3     | 51,602                               | 307         |                                      |
| door public amenities     | Indoor / outdoor public amenities | Steel Reinforcement        | 103,095.32   | kg     | 435,898                              | 103         |                                      |
| door public amenities     | Indoor / outdoor public amenities |                            | 29,687.29    | kg     | 195,152                              | 30          |                                      |
| door public amenities     | Indoor / outdoor public amenities | Aluminium Façade           | 983.40       | kg     | 40,943                               | 1           |                                      |
| treets 6m wide            | Infrastructure                    | Asphalt (Infrastructure)   | 840.00       | m3     | 128,700                              | 2,016 Quant | ities from TAAG: full depth pavement |
| treets 6m wide            | Infrastructure                    | Cement                     | 16.74        | tonnes | 16,600                               |             | ities from TAAG: full depth pavement |
| reets 6m wide             | Infrastructure                    | Aggregate (infrastructure) | 3,780.00     | tonnes | 62,600                               | 3,780 Quant | ities from TAAG: full depth pavement |
| cleways 2m wide (m)       | Infrastructure                    | Asphalt (Infrastructure)   | 412.00       | m3     | 57,100                               |             | ities from TAAG: asphalt cycleway    |
| cleways 2m wide (m)       | Infrastructure                    | Aggregate (infrastructure) | 2,195.00     | tonnes | 36,200                               |             | ities from TAAG: asphalt cycleway    |
| ootpaths 2m wide (m)      | Infrastructure                    | Asphalt                    | 412.00       | m3     | 57,100 *                             |             | ities from TAAG: asphalt cycleway    |
| potpaths 2m wide (m)      | Infrastructure                    | Aggregate (infrastructure) | 2,195.00     | tonnes | 36,200                               |             | ities from TAAG: asphalt cycleway    |

# **Appendix E. Initiatives Model**

# **Initiatives summary**

| Code | Initiatives                             | Total reduction (ton CO2- | Total potable water reduction (kL) | Total waste to landfill (ton) |
|------|-----------------------------------------|---------------------------|------------------------------------|-------------------------------|
| E1   | Greening                                | 4,366                     | - 740,900                          |                               |
| E2   | Solar panels                            | 45,279                    |                                    | -                             |
| E3   | Cool surfaces                           | 5.481                     | -                                  | -                             |
| E4   | Natural and low energy lighting         | 1.183                     | _                                  |                               |
| E5   | Active and public transport incentives  | 23.087                    | -                                  |                               |
| W1   | WSUD - Stormwater management            |                           | 912.500                            |                               |
| W2   | Water efficient fixtures and appliances |                           | 950.744                            |                               |
| M1   | Mass timber buildings                   | 354                       |                                    |                               |
| M2   | Low carbon concrete                     | 5.717                     |                                    |                               |
| M3   | Circular economy                        | 15.017                    |                                    | 12.514                        |

#### Sub initiatives detail

|                | Sub-<br>Initiativos | Darcriptina                                             | Energy |                                                                        |                    |                                  | Water                           |        |                    |                    | Varte                |      |                                       |                                    |                                       |                                                                                                                                                                                                               |                                                                                                                                                                  |
|----------------|---------------------|---------------------------------------------------------|--------|------------------------------------------------------------------------|--------------------|----------------------------------|---------------------------------|--------|--------------------|--------------------|----------------------|------|---------------------------------------|------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initiativ<br>* |                     |                                                         | Rate   | Unit                                                                   | Annual saving (kW) | Annual reduction<br>(ton CO2-eq) | Tutal reduction<br>(tun CO2-eq) | Reta   | Unit               | Annual raving (kL) | Tutal raduction (kL) | Reto | unit                                  | diverted<br>from landfill<br>(ton) | Tutal divorted from<br>landfill (ton) | Arrumptions                                                                                                                                                                                                   | Reference                                                                                                                                                        |
| E1             | E101                | Green roofs and rooftop gardens (public and private acc | 31%    | Xonorqy roduction (kW)                                                 | 59,574             | 55                               | 2,740                           | 0.7409 | kL-year/m2         | -7409              | - 370,450            |      |                                       |                                    |                                       | 31% of electricity reduction for room under green roof<br>(average), 5000m2 of green roof (50% of rooftopr),<br>BAU annual electricity ure - 37.44 kW/m2<br>12% of electricity reduction for room behind wall | ualls and facados in Molbourno and Victoria, Awstralia, ISBN 978-1-<br>74326-745-8                                                                               |
| E1             | E102                | Groon walls (vortical gardons)                          | 12%    | Xonorgy roduction (kW)                                                 | 46,122             | 42                               | 2,122                           | 0.7409 | kL-year/m2         | -7409              | - 370,450            |      |                                       |                                    |                                       | (minimum for green roofs), 10000m2 of green walls,<br>BAU annual electricity ws - 37.44 kW/m2                                                                                                                 | State of Victoria (2014), Growing Green Guide: A quide to green roofs,<br>walls and facades in Molbourne and Victoria, Australia, ISBN 978-1-<br>74326-715-8     |
| E1             | E103                | Increase canapy caver                                   | 11.43% | Increment of canapy cover                                              | n-a                | - 10                             | - 496                           |        |                    |                    |                      |      |                                       |                                    |                                       | All current trees survive and reach full spread by 2050, no other trees are planted, and no trees are last.                                                                                                   | Internal iTree madellina                                                                                                                                         |
| E3             | E301, E302          | Caalsurfaces                                            | 15%    | Xonorqy roduction (kW)                                                 | 119,148.50         | 110                              | 5,481                           |        |                    |                    | -                    |      |                                       |                                    |                                       | Applied to 10000 m2 of rooftops as perscheme building                                                                                                                                                         | US Dopartmont of Enorgy. Factshoot: Cool roofs are ready to save<br>enorgy, cool urban heat islands, and<br>helps lou global warming                             |
| E4             | E402                | Natural and low energy lightening                       | 30×    | Xonorgy roduction duo to<br>lighting control and natural<br>light (kW) | 25719.375          | 24                               | 1,183                           |        |                    |                    | -                    |      |                                       |                                    |                                       | Lighting accounting for 10% of energy we in howevery in howevery and 29% in commercial premires (average)                                                                                                     | https://www.ubdq.orq/rozourcoz/dayliqhtinq<br>https://www.onorqyratinq.qov.au/products/liqhtinq                                                                  |
| E5             | E501, E502, E503    | Active and public transport incentives                  | 20%    | % cartrips roduction (MJ)                                              |                    | 462                              | 23,087                          |        |                    |                    | -                    |      |                                       |                                    |                                       | Roduction of cartrips to Parramatta-liko ratos 1.65<br>cartrips (drivor)/rosidont-day - 20.48%                                                                                                                | TFNSW, Haurohald Travol Survoy - Data by LGA 2018/2019<br>(Parramatta)                                                                                           |
| W2             | W202                | Dry appliances (composting toilets)                     |        |                                                                        |                    |                                  | -                               | 3.5    | Lfavorago flurh    | 383.25             | 19,163               |      |                                       |                                    |                                       | 6 public tailets, 50 was per day per tailet                                                                                                                                                                   | http://www.wostornwator.com.au/filos/assots/public/documonts/fac<br>t-shoots-and-brochuros/saving-wator/bwinoss-amonitios-fact-                                  |
| E4             | E401                | Solf omitting pavomonts for cycloways and footpaths     | 50%    | Zonorgy roduction (ku)                                                 | -                  | -                                |                                 |        |                    |                    |                      |      |                                       |                                    |                                       | Replacing 50% of current cycling and cycleways<br>All 5stars (2020) water rating appliances (BAU - 3star                                                                                                      |                                                                                                                                                                  |
| wz             | W201                | Watersaving fixtures and appliances                     |        |                                                                        |                    |                                  |                                 | 33     | × domand roduction | 18,632             | 931,582              |      |                                       |                                    |                                       | All 5 stars (2020) water rating appliances (BAU-3 star<br>2020). This change represents 33% of water reduction<br>according to internal estimations (see other                                                |                                                                                                                                                                  |
| мз             | M301, M302          | Circular Economy                                        | 1.2    | ton CO2-og f ton warto to<br>Janfill                                   |                    | 300                              | 15,017                          |        |                    |                    | -                    | 70:  | diversion from<br>landfill target (%) | 250.28                             | 12,514                                | Divorrien rato arportargot (NSW Warto Aveidanco<br>and Rozeurco Rocevory Stratogy 2014-21)                                                                                                                    | Dopartmont of the Environment and Energy, National Warte Report<br>2018 / Department of the Environment and Energy, National<br>Greenhoure Accounts Factors 2019 |
| E2             | E201, E202          | Salarpauor                                              | na     | n-a                                                                    | 984,332            | 906                              | 45,279                          |        |                    |                    |                      |      |                                       |                                    |                                       | 16% officioncy at 4,476m2 (50% of rooftops) - 716.16kV<br>installed power in Sydney (Marcot weatherstation)                                                                                                   | National Renouable Energy Laboratory. PVW attr Calculator.<br>https://pvwattr.nrel.gov/pvwattr.php                                                               |
| W1             | W101, W102, W101    | WSUD - Starmwater management (all)                      |        |                                                                        |                    |                                  |                                 | 50     | kLfday             | 18,250             | 912,500              |      |                                       |                                    |                                       | 5kL domand far each of the 10 tanks                                                                                                                                                                           | From Landcom                                                                                                                                                     |
| м1             | M101                | Mass timbor buildings "tatalsavings                     | 9%     | n-a                                                                    | na                 | 354                              | 354                             |        |                    |                    | -                    |      |                                       |                                    |                                       | Applier for public building only, Life cycle CLT Building<br>wring the rame MEP systems as the reference and<br>including carbonsequestration (9% reduction)                                                  | B. Durlinger et all. 2013. Life Cycle Assessment of a cross laminated timber building. ISBN: 978-1-921763-63-2                                                   |
| M2             | M201                | Law carban cancroto                                     | 46%    | Reduction of CO2 emissions<br>from non-structural                      |                    | 5,717                            | 5,717                           |        |                    |                    | -                    |      |                                       |                                    |                                       | 219 kq CO2/m3                                                                                                                                                                                                 | Halcim Viradocr EPD httpr://opd-awtralaria.com/up-<br>cantont/uplaadr/2019/07/Halcim-ViraDocr-EPD.pdf                                                            |
|                |                     | Tutal                                                   |        |                                                                        |                    | 7,959                            | 100,414                         |        |                    |                    | 1,122,344            |      |                                       |                                    | 12,514                                |                                                                                                                                                                                                               |                                                                                                                                                                  |

# Appendix F. Initiatives details and examples

Each initiative is allocated a primary sustainability indicator code: energy and GHG emissions (E), water (W), or waste and materials (M). For each initiative, sub-initiatives are presented to represent the potential range of approach options. It is recognised that many sub-initiatives will impact, to varying degrees, more than one indicator. Symbols are used to indicate the potential range of sustainability indicators that each initiative may impact, as follows:



It is noted that the idicators will likely have benefits that extend beyond the three main indictors considered here. Additional likely benefits include, for example: improved biodiversity and ecosystem functioning, improved human physical and mental health and well-being, increased local economic prosperity, increased local property values, decreased crime rates, and increased infrastructure lifespans.

Each initiative may have a variety of ways to interpret and implement them within the project phases, ranging from business-as-usual approaches to novel, innovative, and at times experimental approaches. Implementation examples from within Australia or internationally are also provided, showing where possible, examples of business-as-usual through the innovative and experimental options.

# E101. Green roofs & rooftop gardens







- Also called 'living roofs', these can be public, private, or restricted access.
- Green roofs refer to permanent rooftop planting systems that cover a significant portion of a roof space and may be extensive (shallow soiled, 20-150mm) or intensive (deep soiled, >150mm)
- Rooftop gardens refer to roofs with less planted areas than green roofs and plantings usually in containers.
- Green roofs especially can contribute positively to: reducing and cleaning stormwater runoff, energy savings in buildings, thermal insulation in building, solar panel functioning when used in combination, cleaning the air of pollutants, cooling the air and reducing urban heat island effects, and biodiversity.
- Cooling effects of green roofs occur through the day and night, so help to reduce urban heat island effects during the day and night (compared to cool seal roofs, see E301).
- If accessible by people, can also contribute positively to physical and mental health and wellbeing through nature exposure



Melbourne Sky Park



Edible rooftop garden on the STEM Kitchen + Garden building in San Francisco produces 9-14kg produce each week



Solar combined with green roof on top of the US Federal Building in San Francisco

# E102. Green walls & vertical gardens





- Also called 'living walls', 'eco walls, or 'live walls', they are now regularly installed, particularly at the small scale, though larger scale examples, and innovative design, are increasing as developments aim to become more sustainable.
- Numerous examples of use in residential and commercial settings, at small and large scales, indoors and outdoors, and taking many forms, including building facades, walls, balcony gardens, internal wall features, and other vertical infrastructure.
- Benefits include: cleaning and cooling the air, stormwater management, biodiversity, reducing carbon emissions, energy savings in buildings, aesthetics, and public health and wellbeing.

#### Examples.



Green wall at Adelaide Zoo entrance, SA.



Vertical gardens on transport flyover supports in Mexico City



Bosco vertical, in Milan, Italy supports mature trees and plantings on residential balconies



Green wall in an SEB office meeting room in Singapore



National Grid HQ in Warwick, England installed native and wildlife-friendly living walls on their new multistorey car park



Park Royal on Pickering in

green buildings in Singapore

Illura Apartments in West Melbourne, VIC has 4 green walls



## E103. Increased canopy cover

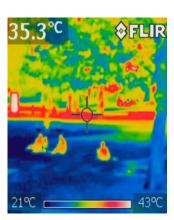






- A now globally accepted critical mechanism for creating liveable cities.
- Can contribute significantly to cooling urban areas
- Can contribute positively to environmental and social health and wellbeing, climate change mitigation and adaptation, local economy prosperity, and infrastructure lifespans (see Appendix H for further examples of the myriad benefits provided by trees).
- With careful species selection can also positively influence water sensitive urban design (WSUD) and biodiversity sensitive urban design (BSUD) outcomes.

## Examples.




Example of urban tree plantings before and after (Portland, Oregon)



**5 MILLION TREES** for Greater Sydney

NSW government commits to planting 5M trees across Greater Sydney by 2030



Thermal imagery showing cooling effect of trees

#### E101, E102, E103. Wider environmental benefits

Of all the potential greening initiatives, increasing tree canopy cover has been shown to provide the greatest range of benefits. Whilst the benefits provided by trees increases over time as the tree matures, the specific amount of benefits provided varies by tree species, age, and condition.

For the purposes of this project, benefits of increased canopy cover have been based on very high-level estimates averaged across tree species, ages, and conditions. The following though provides an example of how ecosystem service benefits can vary depending on tree species and tree age. In this case, we have modelled a newly planted and a mature Sydney blue gum (*Eucalyptus saligna*), the cumulative benefits over the growth of the newly planted gum over a 50-year period, and a mature tuckeroo (*Cupaniopsis anacardioides*). This modelling assumes healthy and natural growth of the trees.

|                              | 1. Sydney<br>blue gum<br>(immature)* | 2. Sydney blue<br>gum growth<br>over 50 yrs** | 3. Sydney blue<br>gum (mature)*** | 4. Tuckeroo<br>(mature)**** |  |
|------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------|--|
|                              |                                      |                                               |                                   |                             |  |
| Carbon stored                | 0.6 kg                               | 7.9 tonnes                                    | 9.03 tonnes                       | 0.23 tonnes                 |  |
| Carbon sequestered           | 0.5 kg/yr                            | 478.3 kg                                      | 0.02 t/yr                         | 0.01 t/yr                   |  |
| Potential evapotranspiration | 0.1 m <sup>3</sup> /yr               | 330.7 m³ (total over 50 years)                | 1,389.2 m <sup>3</sup> /yr        | 21 m <sup>3</sup> /yr       |  |
| Oxygen produced              | 1.3 kg/yr                            | 1.3 tonnes (total over 50 years)              | 40 kg/yr                          | 35.9 kg/yr                  |  |
| Air pollution removed^       | 0.001 kg/yr                          | 3.65 kg                                       | 0.01 t/yr                         | 0.22 kg/yr                  |  |
| Total benefits value         | \$0.02/yr                            | \$28                                          | \$68.45/yr                        | \$1.38/yr                   |  |
| Structural/replacement value | \$73.41                              | n/a                                           | \$72,489.84                       | \$2,835.26                  |  |

<sup>\*</sup> Assumed to be 2m tall and have a 2.5cm diameter at breast height (DBH)

<sup>\*\*</sup> Provides modelled total benefits over 50 years' worth of growth from immature

<sup>\*\*\*</sup> Assumed to be 40m tall and have a 2.5m DBH

<sup>\*\*\*\*</sup> Assumed to be 7m tall and have a 30cm DBH

<sup>^</sup> Includes: CO, O3, SO2, N2, PM2.5

#### E201. Solar panels on buildings







- Refers to traditional roof-top solar panels (now a common addition to residential and commercial buildings to help save energy costs) as well as more innovative photovoltaic technology (e.g. coloured solar panels) that can replace conventional building materials for active building materials.
- Can provide operational cost reductions
- It can contribute to meet the Basix target for GHG emissions reduction (35%-45% for Cherrybrook)
- In some cities, installing traditional roof-top solar panels is now a requirement for new builds.
- Performance of traditional roof top solar panels can be improved by combining with green roofs which cool the local environment around the solar panels (refer to example image for E101)
- Innovative evolutions in solar panel design mean that solar panels can now be installed in an
  artistic manner, and that may not look like traditional solar panels, which may be an
  architectural/aesthetic preference, particularly for some commercial buildings.

# Examples.



Examples of different building integrated photovoltaic panels on display in 2018 at the Solar Energy Research Institute of Singapore (SERIS)







Swiss company, Solaxess, produces coloured and white-finish nanotechnology films to fit to traditional solar panels which alter their appearance without inhibiting function.

#### E202. Solar panels on public access spaces







- Refers to more modern applications of solar panels in public use spaces
- This application of solar panels in more novel than traditional roof top applications, and are often intentionally designed to be multi-purpose, such as being part of art instalments, or aesthetic functional applications (e.g. lighting bike/cycle paths, lighting public spaces).
- Combining solar panels in an innovative, interesting and functional ways in public spaces can help activate spaces, combine technology, design, art, nature, and culture, and build community awareness and support for sustainable design.
- Can provide operational costs reductions and can have educational and aesthetic benefits for the community.
- May also have benefits for water and waste and materials if designed as such (e.g. Singapore's Supertrees)



'The Silicone Forest' at a light rail station in Portland, Oregon (USA). Solar panels power the lights in these art installments.



'La Monarca', the world's first solar mural installation. Unveiled in San Antonio, Texas (USA) in 2017.



Ross Lovegrove's 'Solar Trees of Vienna', was designed for the MAK in Vienna and debuted in 2007 as a nature/art/design installation. It also acted as public lighting and meeting points.



'Supertree Grove' at Gardens by the Bay, Singapore. These structures combine technology, nature, and functionallity. The trunks are covered with vertical gardens, incorporated solar panels store energy to light the Gardens at night, their canopies provide shade during the day, and they collect rainwater for use in irrigation in the Gardens.



'Solaroad', the world's first solar panel bike path installed in 2014 in Amsterdam, The Netherlands.

## E301. Cool seal products on rooftops



- Lighter surfaces reflect more heat than darker ones which lowers external air and surface temperatures.
- Cool seal products are applied to existing dark rooftops to make them white (or paler) and so less heat enters buildings resulting in energy savings from cooling requirements.
- Compared to cooling provided by green roofs (see E101), cool sealed roofs provide greater cooling during the day, though the effects last less time than green roofs which continue to cool through the night.
- Easy to implement and has relatively low cost.

#### Examples.





Since 2009, New York City has painted more than 2 million square meters of rooftops white. Estimating urban cooling effects of up to 1.5°C, and internal building energy savings of up to 30%.

## E302. Cool seal products on pavements



- Cool seal products are being increasingly applied to city's existing dark road surfaces to make them white (or paler) and so provide cooling by decreasing heat absorbed during the day, and decreasing heat released at night.
- Studies from the USA indicate that paler road surfaces may cool road surface temperatures by up to 8°C. Recent trials in Adelaide of different cool surface products (see image below right) indicate diurnal cooling effects of between 2.6°C and 8.65°C, and night cooling effects of between 1.5°C and 4.2°C.
- Easy to implement and relatively low cost.



Los Angeles, USA, is painting its streets pale grey to help mitigate urban heat.



Adelaide, SA, cool roads trial found differences in cooling effects of different products



Western Sydney, NSW, cool roads trials



City of Charles Sturt, SA, cool roads program

#### E401. Self-emitting pavements for cycleways and footpaths





- An emerging and increasingly popular approach to public space lighting that is self-sufficient, environmentally friendly, and practical. The technology uses self-illuminating material, called luminophores or photo-luminescent pebbles, that charge in the sun and can glow for up to 10 hours after dark.
- Some available products use recycled materials in the construction of paths, and other products can be sprayed on to surfaces retrospectively.
- The implementation of this type of pavement could reduce the need for streetlights. This represents a potential reduction of energy use and GHG emissions.



Glow-in-the-dark bike and pedestrian path in Prusków, Poland, opened in 2016.



Van Gogh-Roosegaarde cycle path in Eindhoven, The Netherlands opened in 2014. It's glow-in-thedark design is inspired by van Gogh's Starry Night.



Glow-in-the-dark footpaths being trialled in Singapore, 2017.



Spray-on 'Starpath' glow-in-the-dark product being trialled in Cambridge, UK in 2013.



The 'Gosford Glow Path', Australia's first glow-in-the-dark footpath installed in 2014 on a walkway under the railway line at Wyoming, NSW. Similar paths have since been trialled in Brisbane and Canbera.

## E402. Smart lighting





- Also referred to as 'intelligent' lighting uses systems that allow for light on demand (e.g. motion-sensor, light-sensor, voice command, timer).
- Lighting integrates energetically efficient LEDs and can be either fully activated from non-lit, or simply brightened from being previously low light when motion/activity is detected/controlled. This can be applied in the home setting (e.g. security lights, room activity sensors, smart home systems such as Google Home) or in public spaces such as pedestrian paths and even streetlights.
- Benefits include significant energy savings and decreased CO<sub>2</sub> emissions (up to 80% less electricity used), extended lifetime of LED lights so lower maintenance costs, environmentally friendly, decreased light pollution, and increased safety.
- Easily installed, monitored, and controlled.

#### Examples.



Smart Home devices (e.g. Google Home) allow home features such as lighting to be controlled from apps enabling greater and more efficient control of home energy systems.



Motion-controlled outdoor campus lighting at the University of London, England.



64 streetlights were installed along Pirie Street, in Adelaide, SA, as part of Australia's first intelligent streetlight system trial.



Jaipur, India's largest sensor-based smart lighting project.

#### E501. Infrastructure & facilities for cyclists



- Promoting increased cycling, over personal car use, provides cost savings, helps reduce GHG
  emissions, and supports health and well-being benefits for users of the precinct.
- Clear Australia standards are widely available regarding the design of safe cycle paths and infrastructure.
- Extends beyond providing safe cycle paths, to also include bike facilities that support cycling as a regular commuting option, such as secure bike storage sheds or lockers, bike maintenance stations, and end-of-trip facilities (i.e. storage, shower, changing facilities).
- Additional learnings to be had from globally leading bike-friendly cities in the EU (e.g. Copenhagen, Denmark, Amsterdam, The Netherlands, Strasbourg, France, and Malmo, Sweden)



Protected or segregated bike lanes (example shown from Victoria) are preferred by cyclists and many drivers.



The 'Hovenring' in Eindhoven, The Netherlands, is an elevated roundabout for cyclists so they can safely cross the busy road intersection.



Free, covered ad secure bike storage sheds and lockers at NSW public transport hubs.





End of trip facilities at 100 California, San Francisco, USA, include bike maintenance stands, personal lockers, attractive murals and wayfinding, good lighting, and shower and toilets.

#### E502. Walkable distance to diverse services of public transport



- Creating walkable cities and precincts is an increasing priority world-wide.
- Creating areas and services that encourage walking, over personal car use, provides cost savings, helps reduce GHG emissions, and supports health and well-being benefits for users.
- Trees and other plants and green space have been shown, world-wide, to encourage walking
- Common characteristics of walkable cities/precincts include:
  - Design coherence: clear and easily navigated paths linking areas of interest/activity in close proximity
  - Safety: walkways segregated from traffic, ample time given at traffic crosswalks, and adequate lighting for night use
  - Comfort: consider both the paving materials used, design to allow for easy flow by pedestrians and cyclists, and the environmental comfort provided through tree shading
  - Accessibility: opportunity for all individuals to use the pedestrian environment
  - Attractiveness and interest: clean and well-maintained surroundings, increased green space and tree plantings, art installation and interesting architecture, mixed-use buildings easily accessible, and activities that provide pedestrian interest

#### Examples.



Times Square, New York, USA was converted into pedestrian plazas in 2010 following a trial year which showed an increase in pedestrian use and safety, when cars were removed and walkability of the precinct improved.



Amsterdam, The Netherlands is one of the world's most walkable cities, with limited car traffic in the centre, attractive tree and flower plantings, and a network of walkways and bikeways that connect multiple residential, cultural, green space, commercial, and transport hubs,



The High Line in New York is a disused elevated freight rail line that was re-activated in 2009 as a public park and walkway. It connects over 2.3km of Manhattan and includes public meeting places, a diversity of plantings, artistic installations, and cultural events.

#### E503. Mixed land use including diversity of amenities



- Providing a diversity of amenities and mixed land uses, particularly when integrated with walkability (see E502), can increase the value of local residential buildings and improves the liveability of the zone.
- Encouraging local pedestrian access to stores, restaurants and other businesses, transport hubs, schools and medical centres, green spaces and sport/recreation centres reduces the need to own cars and encourages social connections
- Creates benefits for reducing GHG emissions and improving physical and mental health and well-being in people.
- Land use planning should be based on "transit-oriented development", a new approach to sustainable land use planning which specifically integrates transport systems with land use

#### Examples.



Figure taken from Liang *et al.* (2020) depicting a common traditional urban land use matrix (left), compared to the same land use matrix if planned based on transit-oriented development (right).

## E504. Reduced parking, parking pooling, and car-share exclusive parking



- An increasing global trend is minimising vehicle traffic in cities and urban centres, particularly private vehicles.
- When coupled with improving cycling infrastructure, walkability and amenity diversity (see E501-E503), doing so frees land and spaces on building for other purposes, reduces traffic and associated negative impacts such as smoke, noise, and hazards for pedestrians, and improves the liveability of urban centres.
- Large scale examples of restricted vehicle access, or car-free zones can be seen in global cities such as: New York, London, Madrid, Oslo, Chengdu, Hamburg, Copenhagen, Paris, Athens, Brussels, Mexico City, and Vancouver.
- Other examples seen more commonly include car-pooling, parking pooling, and car-share exclusive car parks.

#### Examples.



A car-free day trialled in Paris in 2015 saw an increase in space for other activities, a cleaner environment, and a drop in noise levels by 3 decibels. The City now holds a car-free day on the first Sunday of each month.



Since 2008, Sydney has installed over 800 dedicated onstreet car-share parking, resulting in cost savings for residents, fewer cars on City streets, and reducing competition for parking and polluting emissions.

# W101. Stormwater/rainwater diversion and capture, including rainwater gardens







- WSUD is now a widely accepted and implemented aspect of urban design. Capturing, storing, and using rainwater where it falls provides filtration and runoff slowing functions as well as a number of other benefits including improving water quality of natural systems, supporting health of on-site plantings, cooling urban environments, supporting biodiversity conservation, improving urban aesthetics, and reducing stormwater infrastructure and management costs.
- Implementation of such diversion and capture features can take many forms and is dependent on the local context and environmental conditions.



A street verge rainwater garden in Adelaide, SA (image by Edge Environment)



A rain garden in the City of Unley, SA, installed as part of the a street verge upgrade program and in alignment with their Development and Stormwater Management Design Guide.





A section of Port Road, City of Charles Sturt, SA, in 2008 (left) and 2018 (right) showing the outcome of part of a large-scale water retention and storage Aquifer Recharge project which converted a cement drainage line and grassy swale into a thriving and biodiveristy rich wetland whislt also managing stormwater, minimising flooding, and cooling the local environment (images from Google Earth).

# W102. Permeable paving



- Permeable paving allows infiltration of stormwater runoff, rather than it being diverted into stormwater channels. This can help water nearby plantings and reduce pollution of waterways due to run-off from non-permeable surfaces.
- Other benefits include reducing the dimensions and costs of stormwater infrastructure.
- Permeable paving is commonly applied to pedestrian footpaths and driveways and can take many forms.

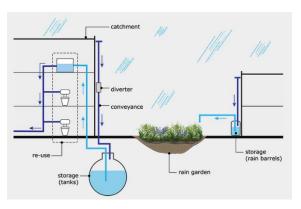








Examples of permeable paving applied in private and public driveways, footpaths and open spaces.


### W103. Domestic rainwater reuse



- Rainwater harvesting can help to decrease stormwater runoff but can also help to substantially
  reduce costs associated with water consumption by reducing the use of mains water for uses such
  as toilets and fire sprinklers, as well as washing machines, swimming pool replenishment, and
  garden irrigation.
- Rainwater also tends to contain lower calcium levels than mains water, providing further such as: increased lifespan of componentry (e.g. toilet valves won't calcify), less detergent used, and healthier plants.
- Some cities have specific requirements for rainwater harvesting in new private or commercial developments. For example, in 2011, Tucson, Arizona, USA became the first US city to require rainwater harvesting as part of all new commercial developments.

### Examples.









Examples of residential and commercial rainwater harvesting systems for toilets, fire sprinklers etc.

### W201. Water saving fixtures and appliances





- A range of water saving fixtures and appliances are available, targeting the biggest water using
  fixtures and appliances in Australian households: showers, taps, washing machines, and toilets,
  with toilets generally being the largest water user.
- Installing water saving fixtures and appliances could provide significant water use savings, and Australian households could save an average of \$175 per year due to reduced costs associated with heating water, and reduced water consumption.
- BASIX targets for water use indicate that new properties in Cherrybrook should reduce consumption by 40% respect the benchmark. This initiative can help go beyond this target

### Examples.

Water efficient washing machines and dishwashers can save up to 60% in water use. In Australia, the Water efficiency Labelling and Standards (WELS) scheme helps identify and compare water-efficiency in appliances





Sensor taps can save up to 60% in water use



Standard toilet installs in Australia now include dual flush options to help save up to 70% of water use



Installing rain shower heads or flow restrictors can help reduce water use by up to 30%







More innovative water-saving toilet designs use grey water stored from the sink to flush the toilet and can eliminate mains water use for flushing (L-R): Caroma's Profile Smart 305 (Australia); Roca's W+W design (Spain); and Sloan's AQUS system (USA), which can be retrofitted to existing toilets.

### W202. Dry appliances (composting toilets)







- Also referred to as 'waterless' or 'dry sanitation' toilets, the installation of composting toilets can have significantly lower environmental impacts than water-efficient toilets (See W201).
- They negate the need for water which can save up to 35,000L of water per year per average family household in Australia. This reduces household costs associated with water consumption and reduces demand on water treatment on and off-site.
- Composting toilets are available in 3 main types: continuous composting, batch composting, and self-contained composting. The first 3 types require underground infrastructure, whereas the self-contained unit may be retrofitted to existing concrete slabs.
- Although dry appliances are still subject to public debate for private applications. There is an
  important opportunity for public use, where appliances such as toilets are used more than 50
  times a day.

Examples.



A self-contained composting toilet by Natire-Loo that can be fitted to existing concrete slabs.

A waterless toilet by Clivus Multrum installed in a family home near Brisbane, Qld.





The Eco-restroom at New York's Bronx Zoo uses Clivus Multrum composting toilet systems.

New York's Prospect Park installed the City's first pubic park composting toilets in 2017.

UK's annual Glastonbury festival has replaced traditional water-flushing port-a-loos with organic composting toilets.



### M101. Mass timber buildings





- Mass timber constructions can store large amounts of carbon and so may provide environmental benefits assuming combined with a fully sustainable life cycle.
- Compared to steel and concrete structures, using timber in buildings provides carbon savings in the manufacture, transport and installation phases.
- Installation of mass timber buildings drives innovation and upskills developers and contractors for the delivery of mass timber buildings.
- Examples of mass timber buildings are increasing globally, with existing structures in locations such as: Portland, London, Atlanta, Norway, Vancouver, Minneapolis, and Australia

### Examples.



Carbon 12, located in Portland, Oregon, is the largest mass timber building in the USA



Mjøsa Tower, is a mixed-used, 18-story building in Norway. Opened in 2019, it is the World's tallest mass timber building.



The first and largest commercial mass timber building in Australia is International House in Sydney.



24 King opened in Brisbane in 2018 and is currently the tallest mass timber building in Australia.

#### M201. Low carbon materials & dematerialization





- Traditional concrete is one of the highest-emitting building materials used in construction. Low
  carbon concrete can reduce embodied carbon emissions by up to 75% and so provides a low
  carbon alternative.
- Use of low carbon concrete also drives innovation and upskills developers and contractors for the delivery of low carbon concrete buildings.
- Low carbon concrete may also perform better than traditional concrete in some areas, such as: improved durability, lower shrinkage, earlier strength gain, higher flexural tensile strength and increased fire resistance
- Various current and emerging low carbon concrete options depending on the application, including: grasscrete, Hempcrete, Ferrock, Ashcrete, and Timbercrete.

### Examples.



333 George St in Sydney is a mixed-use 18storey building which used low carbon concrete to help achieve a 5 star Green Star rating.



Wellcamp Airport at Toowoomba, QLD, comprises Australia's first low carbon concrete pavement.



Hempcrete incorporates woody fibres of the hemp plant, a fast-growing and renewable resource. It is also lightweight which helps to reduce transport emissions



Timbercrete combines sawdust and concrete to create a lightweight product that helps to reuse the sawdust waste product and reduces GHG emissions through reduced transport emissions and replacement of some energy-intensive components of traditional concrete

### M202. Reduced direct and indirect use of raw materials (dematerialization)





- Dematerialisation is a critical aspect of sustainable development entailing action at every stage of construction and operation, including links to improving product efficiency, and saving, reusing, or recycling materials
- Through basic decisions in the design phase of architectural projects material consumption can be reduced over many years.
- Dematerialisation strategies include: minimising use of materials, reduction of secondary finishes, consideration of life cycle costs and embodied energy (see M1, and M201), and consideration of passive energy systems and low energy services (e.g. solar (See E2), intelligent lighting (see E4), rainwater harvesting and low water use (see W1 and W2), low energy heating and cooling systems (See E1 and E3))

### Examples.



Bowden, a suburb in the City of Charles Sturt, SA, is inspiring excellence in sustainable development. It mandates all buildings achieve at least a 5 Star Green Star rating, and includes Australia's first 5 Star Green Star rated townhouse development as well as the country's first residential project to receive a 6 Star Green Star rating ('world leadership'). It has also committed to achieving a precinct-wide Green Star – Communities rating.

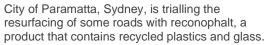
West Village in Brisbane's West End has achieved a 6 Star Green Star Community rating. The project incorporated several sustainability initiatives from the building materials used through to facilities provided for residents and community.





Dockside Green in British Columbia, Canada, is potentially the world's Greenest Neighbourhood. It has achieved globally significant sustainability ratings for the phases already completed. Strategies include: extensive greening, rainwater harvesting, biomass gasificiation plant, on-site sewerage and water treatment, high-efficiency (Water and enegery) appliances and fixtures, alternative transport options, solar panels, and careful materials selection and design.

### M203. Reused materials






- Material recycling is a major ecological principle of ecological engineering which aims to minimise waste production and also utilise generated wastes as inputs for other processes
- Examples include using wetlands to treat wastewater, phytoremediation (i.e. the use of plants to manage water, soil, and air wastes), and using recycled materials in innovative ways (e.g. see M201)
- Benefits of materials recycling include reduced pollution from transport emissions, reduce overall build costs, reduced impact on landfill sites, reduced demand for other products that rely on natural resources.

### Examples.





Developed in 2017, a new innovation, "Pretty Plastic" tiles is considered the world's first 100% recycled cladding material. Dutch studios Overtreders W and Bureau SLA, developed the product using recycled PVC construction products (e.g. downpipes, roof gutters). The tiles were first installed on a permanent building at the Sint-Oelbert Gymnasium school in the Netherlands.



Repurpose It, located in Epping VIC, is an innovative waste-toresource plant that converts contaminated hard waste materials (e.g. rail ballast, soil, C&D waste) into high-value sand, clay and aggregates for use in commercial construction projects. The company has recently registered an EN15804 compliant EPD for its recovered mineral aggregates (see M204).



"Upcycle Studios" in Copenhagen, Denmark, is a townhouse development that uses substantial amounts of reused materials, including reclaimed wood, upcycled windows, and 850 tonnes of concrete with recycled materials content from Copenhagen Metro Construction.

The project team are now planning to build the world's most sustainable building project, "UN17 Village", on the outskirts fo Copenhagen.

The 35,000 m2 eco village will implement each of the UN's 17 sustainable development goals. Due for completion in 2023.



### M204. Environmental Product Declarations (EPDs)





- Environmental Product Declarations are increasing in popularity in Australia and New Zealand, with new aspects such as textiles and social impact being added to more usual construction materials.
- Benefits of EPDs include: demonstrating leadership in a commitment to environmental responsibility and transparency, providing transparency in communication of life cycle environmental performance of goods and services, improving corporate image, and the potential to improve products.
- EPDs could be used to make better informed decisions on selection of products and services. Therefore, it facilitates the reduction of embodied environmental impacts.

### Examples.



Spanish company, Acciona, became the first construction company in the world to register an EPD for civil infrastructures.



Bombardier, a world leading manufacturer of planes and trains, published its second airraft EPD in 2017. It is the only aircraft manufacturer to disclose the full environmental impact of its products



All EPDs registered through the Australasian EPD® Programme are published on the International EPD® System website.

### M301. Commingled materials



- Commingled materials, also known as 'single-stream' or 'single-sort' recycling reduces the cost
  on waste management costs/levies, contributes to government targets and requirements, and
  may simplify and so increase the amount of recycling by residents.
- Commingled materials are separated and decontaminated at high-tech waste management facilities operated by private service providers and councils. Sorting systems in these facilities use a combination of different strategies to separate waste streams including:
  - Blowers to separate lightweight materials such as paper and carboard
  - Magnets
  - Optical scanners
  - Shredders and screens
  - Manual separation
- It requires the provision of bin infrastructure, appropriate signage, and collection services.

### Examples.





Co-mingled recycling negates the need to separate different materials, with a single collection bin being used to collect materials such as: paper, plastic, glass, steel, aluminium, and cardboard. Different regions and companies will have different limitations on which materials can be combined.

### M302. Food waste





- Recycling and reusing food waste reduce emissions associated to waste management and reduces the cost on waste management cost/levies and contributes to government target and requirements.
- Strategies may include residential and commercial food waste recycling options, with composted soil and fertiliser able to be reused on site in landscaping, gardens (including rooftop and vertical gardens, see E1), and community produce gardens.
- Collective commercial food waste recycling solutions can be co-located to support residential
  users. For example, the Pulpmaster technology, currently used in food courts and commercial
  businesses, macerate food waste into pulp that then is collected by the product provider. This pulp
  is then used in to produce biogas for renewable energy generation and organic fertilisers.

### Other examples



During construction of Dockside Green, organic waste such as paper towels and lunch leftovers were composted. During the current occupation of the development, compost from commercial and residential buildings is used to build healthy soil in landscapes across the site.

The "compost revolution" is an approach expanding across Australian councils encouraging and supporting residents to convert food scraps into soil and fertilizer, thereby reducing landfill and GHG emissions. Includes a variety of small to large compost bins and worm farms.



The images used as examples for the initiatives were taken from various online sources, as listed below.

| INITIATIVE       | SUB-INITIATIVE                       | IMAGE SOURCES                                                                                                  |  |  |  |  |
|------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| E1. Greening     | E101. Green roofs &                  | https://landscapeaustralia.com/articles/an-elevated-                                                           |  |  |  |  |
|                  | rooftop gardens                      | exchange-sky-park-one-melbourne-quarter/                                                                       |  |  |  |  |
|                  |                                      | http://www.stemkitchensf.com/garden                                                                            |  |  |  |  |
|                  |                                      | http://www.stemkitchensf.com/garden                                                                            |  |  |  |  |
|                  | E102. Green walls & vertical gardens | https://fytogreen.com.au/adelaide-zoo-curved-green-wall/                                                       |  |  |  |  |
|                  | 3                                    | https://www.theguardian.com/cities/2018/oct/30/mexico-city-via-verde-vertical-gardens-pollution-climate-change |  |  |  |  |
|                  |                                      | https://unsplash.com/photos/0NJ9urGXrlg                                                                        |  |  |  |  |
|                  |                                      | https://www.verticalgreen.com.sg/products/greenwallsystem/                                                     |  |  |  |  |
|                  |                                      | https://inhabitat.com/park-royal-tower-wohas-stunning-<br>vertical-urban-park-opens-in-singapore/              |  |  |  |  |
|                  |                                      | https://www.ansgroupglobal.com/living-wall/case-<br>studies/linksway                                           |  |  |  |  |
|                  |                                      | https://www.sminational.com.au/living-wall-projects/national-grid-uk                                           |  |  |  |  |
|                  |                                      | http://www.growinggreenguide.org/wp-<br>content/uploads/2014/02/growing_green_guide_ebook_1302<br>14.pdf       |  |  |  |  |
|                  | E103. Increase canopy cover          | https://www.portlandoregon.gov/bes/article/574025                                                              |  |  |  |  |
|                  |                                      | https://www.planning.nsw.gov.au/Policy-and-<br>Legislation/Open-space-and-parklands/5-million-trees            |  |  |  |  |
|                  |                                      | https://theconversation.com/can-trees-really-cool-our-cities-down-44099                                        |  |  |  |  |
| E2. Solar panels | E201. Solar panels on buildings      | https://landartgenerator.org/blagi/archives/75833                                                              |  |  |  |  |
|                  | on buildings                         | https://www.solaxess.ch/en/home/                                                                               |  |  |  |  |
|                  |                                      | https://www.tesla.com/en_AU/solarroof                                                                          |  |  |  |  |
|                  | E202. Solar panels on public access  | https://trimet.org/publicart/yellowline.htm                                                                    |  |  |  |  |
|                  | spaces                               | https://www.designrulz.com/solar-energy-trees/                                                                 |  |  |  |  |
|                  |                                      | https://monarcas.org/                                                                                          |  |  |  |  |
|                  |                                      | https://unsplash.com/photos/UoovvM6CMoQ                                                                        |  |  |  |  |
|                  |                                      | https://en.solaroad.nl/                                                                                        |  |  |  |  |

| INITIATIVE                                 | SUB-INITIATIVE                                   | IMAGE SOURCES                                                                                                                                                              |  |  |  |  |
|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| E3. Cool surfaces                          | E301. Cool seal                                  | https://cooperator.com/article/how-cool-roofs-help-your-                                                                                                                   |  |  |  |  |
|                                            | products on rooftops                             | property-and-the-environment/full                                                                                                                                          |  |  |  |  |
|                                            |                                                  | https://coolroofs.org/documents/NYC_CoolRoofs_6-14-<br>17_Presentation.pdf                                                                                                 |  |  |  |  |
|                                            | E302. Cool seal products on pavements            | https://e360.yale.edu/features/urban-heat-can-white-roofs-help-cool-the-worlds-warming-cities                                                                              |  |  |  |  |
|                                            |                                                  | https://yoursay.cityofadelaide.com.au/cool-<br>road?tool=news_feed#tool_tab                                                                                                |  |  |  |  |
|                                            |                                                  | https://www.cityofparramatta.nsw.gov.au/western-sydney-<br>cool-roads-trial                                                                                                |  |  |  |  |
|                                            |                                                  | https://www.charlessturt.sa.gov.au/environment/climate-<br>change/coolseal                                                                                                 |  |  |  |  |
| E4. Natural and low energy lighting        | E401. Self-emitting pavements for cycleways and  | https://www.ecowatch.com/solar-powered-bike-path-poland-<br>2031343702.html                                                                                                |  |  |  |  |
| 3 3                                        | footpaths                                        | https://www.dezeen.com/2014/11/12/daan-roosegaarde-van-gogh-bicycle-path-glowing-patterns-nuenen-netherlands/                                                              |  |  |  |  |
|                                            |                                                  | https://www.boredpanda.com/glow-in-the-dark-rail-corridor-singapore/?utm_source=google&utm_medium=organic&utm_campaign=organic                                             |  |  |  |  |
|                                            |                                                  | https://slate.com/human-interest/2013/12/pro-teq-starpath-<br>uses-solar-power-to-light-christ-s-pieces-park-in-cambridge-<br>england.html                                 |  |  |  |  |
|                                            |                                                  | https://www.dailytelegraph.com.au/newslocal/central-<br>coast/australias-first-glowinthedark-footpath-installed-at-<br>wyoming/news-story/74eb60c889ccb4a7cca36405214f2f56 |  |  |  |  |
| E402. Smart lightin                        |                                                  | https://robots.net/tech-reviews/best-smart-home-devices-you-dont-want-to-miss/                                                                                             |  |  |  |  |
|                                            |                                                  | https://www.linkedin.com/pulse/how-motion-detectors-work-public-space-using-example-university/                                                                            |  |  |  |  |
|                                            |                                                  | https://www.abc.net.au/news/2016-05-26/intelligent-led-street-light-trial-australian-first-for-adelaide/7445362                                                            |  |  |  |  |
|                                            |                                                  | https://www.tvilight.com/wp-content/uploads/2019/06/Jaipur-Smart-City-Lighting-Tvilight-Case-Study.pdf                                                                     |  |  |  |  |
| E5. Active and public transport incentives | E501. Infrastructure and facilities for cyclists | https://www.vicroads.vic.gov.au/traffic-and-road-<br>use/cycling/bicycle-infrastructure-design                                                                             |  |  |  |  |
|                                            |                                                  | https://ipvdelft.com/projects/hovenring/                                                                                                                                   |  |  |  |  |
|                                            |                                                  | https://appln.transport.nsw.gov.au/bikelockers/faces/jsp/public/home.xhtml                                                                                                 |  |  |  |  |

| INITIATIVE                                                                                  | SUB-INITIATIVE                                                         | IMAGE SOURCES                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                             |                                                                        | https://bikesmakelifebetter.com/bike-parking-for-employers-developers-a-guide-to-end-of-trip-facilities/                                                              |  |  |
|                                                                                             | E502. Walkable distance to diverse services of public transport        | https://www.thefifthestate.com.au/wp-content/uploads/2014/12/Precincts_ebook_final-double-page.pdf                                                                    |  |  |
|                                                                                             |                                                                        | https://www.tripstodiscover.com/travel-by-foot-most-walkable-cities-around-the-world/                                                                                 |  |  |
|                                                                                             |                                                                        | https://www.thehighline.org/                                                                                                                                          |  |  |
|                                                                                             | E503. Mixed land use including diversity of amenities                  | https://www.sciencedirect.com/science/article/abs/pii/S01497<br>18919302381                                                                                           |  |  |
|                                                                                             | E504. Reduced parking, parking pooling, and carshare exclusive parking | https://www.elitereaders.com/oslo-city-to-ban-cars-by-2019/                                                                                                           |  |  |
| V1. WSUD – W101. tormwater Stormwater/rainwater nanagement diversion and capture, including |                                                                        | https://www.unley.sa.gov.au/files/assets/public/development-amp-major-projects/building-and-renovating/development-guidelines/city-of-unley-stormwater-guidelines.pdf |  |  |
|                                                                                             | rainwater gardens                                                      | https://greenhillaustralia.com.au/project/leader-<br>street_forestville/                                                                                              |  |  |
|                                                                                             | W102. Permeable paving                                                 | https://www.unley.sa.gov.au/files/assets/public/development-amp-major-projects/building-and-renovating/development-guidelines/city-of-unley-stormwater-guidelines.pdf |  |  |
|                                                                                             |                                                                        | https://www.premierpavers.com.au/permeable-pavers/                                                                                                                    |  |  |
|                                                                                             |                                                                        | https://www.buildings.com/article-<br>details/articleid/18830/title/permeable-pavement-battles-<br>stormwater-runoff                                                  |  |  |
|                                                                                             | W103. Domestic rainwater reuse                                         | https://www.rainfilltanks.com.au/invest-rainwater-harvesting-systems-water-filters-perth/                                                                             |  |  |
|                                                                                             | W104. Rainwater for fire system top up                                 | https://www.next.cc/journey/design/rain-water-harvesting                                                                                                              |  |  |
|                                                                                             |                                                                        | https://www.constructionmagnet.com/gutter-<br>opportunities/gutter-contractors-find-rainwater-harvesting-<br>systems-help-turn-a-profit                               |  |  |
|                                                                                             |                                                                        | https://www.ny-engineers.com/blog/automatic-fire-sprinklers-a-lucrative-investment                                                                                    |  |  |
| W2. Water                                                                                   | W201. Water saving                                                     | https://www.energy.gov.au/households/water-efficiency                                                                                                                 |  |  |
| efficient fixtures & appliances                                                             | fixtures & appliances                                                  | https://www.intelligenthanddryers.com/blog/benefits-sensor-taps-problems                                                                                              |  |  |
|                                                                                             |                                                                        | https://www.oyster.com/articles/could-dual-flush-toilets-become-2010s-must-have-amenity/                                                                              |  |  |

| INITIATIVE                 | SUB-INITIATIVE                                                                                                              | IMAGE SOURCES                                                                                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                             | https://www.zdnet.com/article/the-toilet-re-imagined-four-                                                                      |
|                            |                                                                                                                             | water-saving-designs/                                                                                                           |
|                            |                                                                                                                             | https://specify.caroma.com.au/products/toilet-<br>suites/profile/profile-5-toilet-suite-deluxe-with-integrated-<br>hand-basin-2 |
|                            |                                                                                                                             | https://www.treehugger.com/watersaver-technologies-aqus-<br>uses-sink-greywater-for-toilet-4856382                              |
|                            |                                                                                                                             | https://www.waterwisetech.net/specs/sloan_aqus_information_brochure.pdf                                                         |
|                            | W202. Dry appliances                                                                                                        | https://www.yourhome.gov.au/water/waterless-toilets                                                                             |
|                            | (composting toilets)                                                                                                        | https://www.nature-loo.com.au/products/composting-toilets                                                                       |
|                            |                                                                                                                             | https://www.spec-<br>net.com.au/press/0415/cli_290415/Odourless-Waterless-<br>Toilets-Clivus-Multrum                            |
|                            |                                                                                                                             | https://www.theguardian.com/music/2016/jun/18/glastonbury-new-organic-toilets                                                   |
|                            |                                                                                                                             | https://clivusmultrum.com/green-building-bronx.php                                                                              |
|                            | https://www.dnainfo.com/new-york/20170619/windsor-<br>terrace/composting-toilet-prospect-park-wellhouse-public-<br>restroom |                                                                                                                                 |
| M1. Mass timber buildings  | M101. Mass timber buildings                                                                                                 | https://e360.yale.edu/features/as-mass-timber-takes-off-how-green-is-this-new-building-material                                 |
|                            |                                                                                                                             | https://www.puitmajaliit.ee/news/norway-to-build-world-s-tallest-timber-building                                                |
|                            |                                                                                                                             | https://www.woodsolutions.com.au/inspiration-case-study/2017-atda-winner-international-house-sydney                             |
|                            |                                                                                                                             | https://architectureau.com/articles/australias-tallest-<br>engineered-timber-office-building-opens/                             |
| M2. Low carbon materials & | M201. Low carbon concrete                                                                                                   | https://www.boral.com.au/projects/333-george-street                                                                             |
| dematerialisation          | M202. Dematerialisation                                                                                                     | https://www.wagner.com.au/main/what-we-do/earth-friendly-concrete/efc-home/                                                     |
|                            |                                                                                                                             | https://inhabitat.com/11-green-building-materials-that-are-<br>way-better-than-concrete/                                        |
|                            |                                                                                                                             | https://new.gbca.org.au/showcase/communities-and-precincts/bowden-development/                                                  |
|                            |                                                                                                                             | https://www.westvillage.com.au/sustainability/                                                                                  |
|                            |                                                                                                                             | http://www.solaripedia.com/files/571.pdf                                                                                        |

| INITIATIVE           | SUB-INITIATIVE            | IMAGE SOURCES                                                                                                          |  |  |
|----------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|                      | M203. Reused materials    | https://www.roadsonline.com.au/city-of-parramatta-trials-reconophalt-roads/                                            |  |  |
|                      |                           | https://www.dezeen.com/2020/03/03/pretty-plastic-<br>overtreders-w-bureau-sla-upcycled-products/                       |  |  |
|                      |                           | https://www.dezeen.com/2019/04/16/upcycle-studios-townhouses-lendager-group-copenhagen-recycled-materials/             |  |  |
|                      |                           | https://www.unenvironment.org/news-and-stories/story/skys-limit-architects-design-un17-eco-village-copenhagen          |  |  |
|                      | M204. EPDs                | https://www.environdec.com/Articles/EPD/EPD-as-part-of-asustainable-strategy/                                          |  |  |
|                      |                           | https://www.bombardier.com/en/media/newsList/details.bca<br>20171003_bombardierreceivescs300epd.bombardiercom.ht<br>ml |  |  |
|                      |                           | https://edgeenvironment.com/uptake-of-epds-in-australia/                                                               |  |  |
| M3. Circular economy | M301. Comingled materials | https://www.regenwaste.com/what-is-commingled-waste-and-why-do-you-need-to-know-about-it                               |  |  |
|                      |                           | https://www.cleanaway.com.au/waste/commingled-recycling/                                                               |  |  |
|                      | M302. Food waste          | http://www.solaripedia.com/files/571.pdf                                                                               |  |  |
|                      |                           | https://compostrevolution.com.au/products/                                                                             |  |  |

### **Appendix G The Benefits of Trees**

G.1 The following summary of urban tree benefits is taken from Planet Ark.

### The Benefits of Trees





### TREES ARE GOOD FOR THE ENVIRONMENT

- Trees promote biodiversity 1
- Trees produce axygen
- Trees combat the greenhouse effect through carbon sequestration 1
- Trees reduce storm-water run-off 1
- Trees help control temperature <sup>1</sup> Trees reduce salinity and soil erosion <sup>2</sup>
- Trees reduce noise and air pollution 1
- Trees act as water filters and improve water quality 1
- Trees help conserve energy with their shading and evapotranspiration effect 1
- Trees provide nucleii for rain and help increase rainfall 3
- Trees improve air quality by absorbing polluting gases and odours and filtering air particles <sup>1</sup>
- Trees save water as shade from trees slows water evaporation 1



### TREES ARE GOOD FOR BUSINESSES

- The presence of trees translates into increased financial returns 4
- Trees attract customers 4
- Trees provide a good impression for customers 4
- Shoppers linger longer in the shade '
- Trees help businesses achieve greater market identity<sup>4</sup>
- Trees provide attractive commercial settings 4
- Trees allow businesses to differentiate themselves from competitors 4
- Trees give businesses a competitive edge 4
- Trees help create a sense of security for customers 4



### TREES ARE GOOD FOR OUR CITIES

- Trees cool cities by shading homes and streets, and by releasing water vapour into the air through their leaves 1
- Trees break up urban "heat islands" !
- Shade from trees helps to prolong the life of city pavements and roads, and reduces the need for resurfacing <sup>4</sup>
- Trees beautify cityscapes
- Trees aid in traffic control by separating pedestrians from vehicles 3
- Tree canopy cools parking lots and reduces the evaporative hydrocarbon emissions from parked vehicles that are released from fuel tanks and hoses as gasoline evaporates 4



### TREES ARE GOOD FOR THE ECONOMY

- Fruit harvested from community orchards can be sold, thus providing income
- Trees can be utilised for fuel, building materials and craft
- Trees increase property values. The beauty of a well-planted property and its surrounding street and neighbourhood can raise property values by as much as 15 percent <sup>a</sup>
- Trees attract businesses and customers to communities 9
- For a planting cost of US \$250 \$600, a single street tree returns over US \$90 000 of direct benefits 10
- Trees enhance tourism by adding beauty and shade to a location 11



### TREES MAKE CARING. SHARING COMMUNITIES

- Tree plantings provide an opportunity for community involvement and engage all cultures, ages and genders in the important role of tree planting or tree care
- Trees beautify communities and improve the views
- Trees make great landmarks that can give communities a new identity and encourage community spirit Shared green spaces, particularly those having trees, help
- strengthen social ties among neighbours. A US series of studies of inner-city neighbourhoods shows green spaces with trees contribute to healthier, more supportive patterns of interaction among residents, including greater sharing of resources 15
- Individuals living in 'greener' buildings reported more social activities, more visitors, knew more of their neighbours and had stronger feelings of belonging<sup>12</sup>













## The Benefits of Trees





### TREES MAKE HAPPY, HEALTHY CHILDREN

- Tree shade helps reduce exposure to harmful ultraviolet rays, thus providing protection to children at schools and
- playgrounds where children spend hours outdoors Trees provide fun play opportunities for children through
- activities like climbing, swinging or creating a tree house Children living in tree-lined streets have a lower risk of developing asthma and its symptoms 12
- Attention Deficit Disorder symptoms are relieved in children after spending prescribed amounts of time in green spaces the greener the setting, the more the relief 16
- Girls with home views of nature score higher on tests of concentration and self-discipline and score lower on tests of impulsivity 15
- Planting trees encourages environmental custodianship amongst children
- Kindergarten children playing in forest-type environments improved significantly in 8 out of 9 tasks on a physical fitness test whereas children playing in less natural outdoor play environments only improved in 3 out of 9 tasks 14
- In two Swedish nurseries with similar conditions and similar teaching staff, children with the green outdoor play settings reported less than half the number of sick days than the children at a city day care centre with no green play setting 17



### TREES HEAL AND HELP YOU LIVE LONGER!

- A study of senior citizens in Japan found that the presence of parks and tree-lined streets near senior citizen residences were significant predictors of higher survival over the following five years. Living in areas with walkable green spaces positively influenced the longevity of urban senior citizens independent of their age, sex, marital status, baseline functional status and socioeconomic status
- Planting trees and gardening is a physical activity that helps you burn kilojoules
- Many trees have significant medicinal properties 19
- Hospital patients have been shown to recover from surgery more quickly when their hospital room offered a view of trees 2

### TREES MAKE SOCIETY A BETTER PLACE

- The presence of trees can be associated with lower crime rates as it helps people to relax thereby reducing aggression
- The presence of trees increases surveillance and discourages criminals, as the 'green and groomed' appearance of a property is a cue that the owners and residents care about a property and watch over it and each other 21
- Trees ease poverty's burden in inner city neighbourhoods 22
- Trees act as privacy screens and muffle sound
- Inner city families with trees and greenery in their immediate outdoor surroundings have safer domestic environments than families who live in areas that are barren of street trees and nature 21



### TREES ADD VALUE TO THE WORLD AS IT IS

- Trees mark the seasons, telling us when it's Spring, Summer, Autumn or Winter
- Trees feed people, animals and birds
- Trees can be utilised symbolically. Christmas just wouldn't be the same without a Christmas Tree!
- Trees shelter plants, crops and livestock, protecting them from the elements
- Trees have historic value. Old trees represent a link with the past that can extend through hundreds of years
- The trunk of a tree can tell its own story and help us to learn about the kind of environment and climactic conditions that the tree has lived through in a certain area
- Trees are valuable as commemoratives of deceased loved ones and for passing on something of value to future



### TREES MAKE THE WORLD A BEAUTIFUL PLACE

- Trees provide canopy and habitat for wildlife Trees can mask unsightly views. They muffle sound from nearby streets and freeways, and create an eye-soothing canopy of green
- Trees absorb dust and wind and reduce glare
- Trees creatively inspire the artists, writers and musicians that influence our culture. Think Flame Trees by Cold chisel, Tall Trees by Crowded House, Home Among the Gum Trees by John Williamson, or of poet Joyce Kilmers's Trees or artist Paul Cezanne's Poplar Trees
- Trees are a work of nature's art, with leaves changing colour, and trees growing, changing shape, becoming mobile in the wind, casting brilliant shadows, filtering rays of sun and moonlight, and yielding flowers and fruit of many colours.







National Tree Day is organised by Planet Ark in partnership with Toyota Australia

### The Benefits of Trees



#### REFERENCES

- <sup>1</sup>Coder, R. D. (1996)!Identified Benefits of Community Trees and Forests.!University of Georgia.
- 2 Marcar, N. Retrieved May 28, 2008 from www.csiro.au/science/ SalinityStreamflow.html
- <sup>3</sup> Tudge, C. (2006) The Secret Lives of Trees. Australia. Penguin.
- 4 United States Department of Agriculture Southern Region. Benefits of Urban Trees. Urban and Community Forestry: Improving our quality of life.
- 5 Coutts A.M., Beringer J., & Tapper N.J. (2007) Changing urban climate and CO2 emissions: implications for the development of policies for sustainable cities. Urban Policy and Research. Submitted May 2007
- Arid Zone Times Technical Bulletin II. February 1998, An Arid Zone Trees Publication
- <sup>7</sup> Dixon, K. K., and K. L. Wolf. 2007. Benefits and Risks of Urban Roadside Landscape: Finding a Livable, Balanced Response. Proceedings of the 3rd Urban Street Symposium (June 24-27, 2007; Seattle, WA). Washington D.C.: Transportation Research Board of the National Academies of Science
- Burden, D. (2006) Benefits of Street Trees. Glatting Jackson and Walkable Communities Inc.
- 11 Retrieved May 28, 2008 from www.forest-network.org
- 12 Wolf, K.L. (2008) Social Benefits of Civic Nature, Master Gardener, Winter 2008, P7.
- <sup>12</sup> McKenney, A.S (2008) Medical News Today. Online First J Epidemiol Commun Health 2008.
- 14 Taylor, A.F., F.E. Huo and W.C. Sullivan. 2001. Coping with ADD: The Surprising Connection to Green Play Settings. Environment and Behavior 33 (1): Pp 54-77.
- 15 Taylor, A.F., F.E. Huo and W.C. Sullivan. 2002. Views of Nature and Self Discipline Evidence from Inner City Children. Journal of Environmental Psychology 22: Pp 49 - 63

- 16 Fjortoft, I. (2001). The natural environment as a playground for children: The impact of outdoor play activities in preprimary school children. Early Childhood Education Journal, 29(2), Pp 111-117.
- <sup>17</sup> Grahn, P., Martensson, F., Lindblad, B., Nilsson, P., & Elkman, A. (1997). Ute pa Dagis (Outdoors at Daycare). Stad och Land (City and Country),
- <sup>18</sup> Takano, T., K. Nakamura, and M. Watanabe (2002) Urban Residential Environments and Senior Citizens' Longevity in Mega-City Areas: The Importance of Walkable Green Space. Journal of Epidemiology and Community Health 56, 12 Pp 913-
- 19 Retrieved May 28, 2008 from www.woodmagazine.com
- <sup>20</sup> K. K. Hall, D. N. Kyriacou, J. A. Handler, and J. G. Adams (2008) Environment and Behavior. Impact of Emergency Department Built Environment on Timeliness of Physician Assessment of Patients With Chest Pain 40, Pp 233-248.
- 21 Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environment and Behaviour. Vol 33 No.3, May 2001, Pp 343 - 367.
- <sup>27</sup> Kuo, F.E. (2001) Coping with Poverty: Impacts of Environment and attention in the Inner City. Environment and Behaviour, Volume 33, Number 1 (January 2001). Pp 5 -34.









National Tree Day is organised by Planet Ark in partnership with Toyota Australia

#### G.2 Wider environmental benefits of trees (modelled)

Of all the potential greening initiatives, increasing tree canopy cover has been shown to provide the greatest range of benefits. Whilst the benefits provided by trees increases over time as the tree matures, the specific amount of benefits provided varies by tree species, age, and condition.

For the purposes of this project, benefits of increased canopy cover have been based on very high-level estimates averaged across tree species, ages, and conditions. The following provides an example of how ecosystem service benefits can vary depending on tree species and tree age. In this case, EDGE modelled a newly planted and a mature Sydney blue gum (*Eucalyptus saligna*), the cumulative benefits over the growth of the newly planted gum over a 50-year period, and a mature tuckeroo (*Cupaniopsis anacardioides*). This modelling assumes healthy and natural growth of the trees.

|                              | 1. Sydney<br>blue gum<br>(immature)* | 2. Sydney blue<br>gum growth<br>over 50 yrs** | 3. Sydney blue<br>gum (mature)*** | 4. Tuckeroo<br>(mature)**** |  |
|------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------|--|
|                              |                                      |                                               |                                   |                             |  |
| Carbon stored                | 0.6 kg                               | 7.9 tonnes                                    | 9.03 tonnes                       | 0.23 tonnes                 |  |
| Carbon sequestered           | 0.5 kg/yr                            | 478.3 kg                                      | 0.02 t/yr                         | 0.01 t/yr                   |  |
| Potential evapotranspiration | 0.1 m <sup>3</sup> /yr               | 330.7 m³ (total<br>over 50 years)             | 1,389.2 m <sup>3</sup> /yr        | 21 m <sup>3</sup> /yr       |  |
| Oxygen produced              | 1.3 kg/yr                            | 1.3 tonnes<br>(total over 50<br>years)        | 40 kg/yr                          | 35.9 kg/yr                  |  |
| Air pollution removed^       | 0.001 kg/yr                          | 3.65 kg                                       | 0.01 t/yr                         | 0.22 kg/yr                  |  |
| Total benefits value         | \$0.02/yr                            | \$28                                          | \$68.45/yr                        | \$1.38/yr                   |  |
| Structural/replacement value | \$73.41                              | n/a                                           | \$72,489.84                       | \$2,835.26                  |  |

<sup>\*</sup> Assumed to be 2m tall and have a 2.5cm diameter at breast height (DBH)

<sup>\*\*</sup> Provides modelled total benefits over 50 years' worth of growth from immature

<sup>\*\*\*</sup> Assumed to be 40m tall and have a 2.5m DBH

<sup>\*\*\*\*</sup> Assumed to be 7m tall and have a 30cm DBH

<sup>^</sup> Includes: CO, O3, SO2, N2, PM2.5

# **Appendix H Sustainability Impacts of Scheme Changes**

The initial scheme proposed for Cherrybrook SSP in early 2021 was updated in February 2022. This new scheme, as modelled and presented in this report, has different sustainability impacts respect to the previous design. The table below summarises and compares the sustainability impacts estimated for both schemes.

|                                                 |                         | Previous Scheme (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Current Scheme (2022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |      |                      |
|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|----------------------|
| Lifecycle sustainability impact                 | Units                   | FAI  TO THE STATE OF THE STATE | The second of th | Difference   | %    |                      |
| Baseline Impacts                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                      |
| Energy Use                                      | GJ                      | 975.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 835,285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 140,572    | 14%  | Improved             |
| Scope 1 Emissions                               | ton CO <sup>2</sup> -eq | 23.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 3,412      |      | Improved             |
| Scope 2 Emissions                               | ton CO <sup>2</sup> -eq | 125,906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105,082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 20,824     |      | Improved             |
| •                                               | ton CO <sup>2</sup> -eq | 235,350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 23,694     |      |                      |
| Scope 3 Emissions                               |                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 211,656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |      | Improved             |
| Total Emissions                                 | ton CO <sup>2</sup> -eq | 384,992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 337,062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 47,930     |      | Improved             |
| Potable water use  Non-potable water use        | ML                      | 4,591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 934<br>- 0 |      | Improved<br>Improved |
| Total water use                                 | ML                      | 4.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 934        |      | Improved             |
| Materials use                                   | tons                    | 101,435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 8,581      |      | Improved             |
| Materials use  Materials embodied GHG emissions | ton CO <sup>2</sup> -eq | 50,471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45,657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4,814      |      | Improved             |
| Waste generation                                | tons                    | 63,393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 3,388      |      | Improved             |
| Waste to landfill                               | tons                    | 29,235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27,338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1,897      |      | Improved             |
| GHG emissions from waste management             | ton CO <sup>2</sup> -eq | 38,284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35,628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2,656      |      | Improved             |
| Initiatives impacts (reductions)                | ton oo -eq              | 30,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,000        | 1 70 | improved             |
| GHG emissions reduction                         | ton CO <sup>2</sup> -eq | 108,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 17,853     | 16%  |                      |
| Potable water savings                           | ML                      | 1.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 114        | 6%   |                      |
| Waste diversion from landfill                   | ton                     | 13,747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12,514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1.233      | 9%   |                      |
| GHG emissions reduction as % of baseline        | %                       | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,            | 270  | Technically same     |
| Potable water savings as % of baseline          | %                       | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |      | Improved             |
| Waste diversion from landfill as % of baseline  | %                       | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |      | Technically same     |